Effective DDoS Mitigation via ML-Driven In-Network Traffic Shaping

服务拒绝攻击 计算机科学 互联网 特里诺 计算机安全 应用层DDoS攻击 万维网
作者
Ziming Zhao,Zhuotao Liu,Huan Chen,Fan Zhang,Zhuoxue Song,Zhaoxuan Li
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:21 (4): 4271-4289 被引量:8
标识
DOI:10.1109/tdsc.2023.3349180
摘要

Defending against Distributed Denial of Service (DDoS) attacks is a fundamental problem in the Internet. Over the past few decades, the research and industry communities have proposed a variety of solutions, from adding incremental capabilities to the existing Internet routing stack, to clean-slate future Internet architectures, and to widely deployed commercial DDoS prevention services. Yet a recent interview with over 100 security practitioners in multiple sectors reveals that existing solutions are still insufficient against , due to either unenforceable protocol deployment or non-comprehensive traffic filters. This seemingly endless arms race with attackers probably means that we need a fundamental paradigm shift. In this paper, we propose a new DDoS prevention paradigm named preference-driven and in-network enforced traffic shaping , aiming to explore the novel DDoS prevention norms that focus on delivering victim-preferred traffic rather than consistently chasing after the DDoS attacks. Towards this end, we propose DFNet, a novel DDoS prevention system that provides reliable delivery of victim-preferred traffic without full knowledge of DDoS attacks. At a very high level, the core innovative design of DFNet embraces the advances in Machine Learning (ML) and new network dataplane primitives, by encoding the victim's traffic preference (in the form of complex ML models) into dataplane packet scheduling algorithms such that the victim-preferred traffic is forwarded with priority at line-speed, regardless of the attacker strategy. We implement a prototype of DFNet in 11,560 lines of code, and extensively evaluate it on our testbed. The results show that a single instance of DFNet can forward 99.93% of victim-desired traffic when facing previously unseen attacks, while imposing less than 0.1% forwarding overhead on a dataplane with 80 Gbps upstream links and a 40 Gbps bottleneck.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉以柳完成签到,获得积分10
刚刚
英姑应助格格巫采纳,获得10
1秒前
CipherSage应助薇薇采纳,获得10
2秒前
summer完成签到,获得积分10
2秒前
学术通zzz发布了新的文献求助10
3秒前
缥缈的寄云完成签到,获得积分10
3秒前
4秒前
5秒前
FashionBoy应助wangwenzhe采纳,获得10
6秒前
舒适乐儿完成签到 ,获得积分10
7秒前
Kim发布了新的文献求助10
8秒前
君翊发布了新的文献求助10
10秒前
擎天柱完成签到,获得积分10
10秒前
李志平完成签到,获得积分10
11秒前
11秒前
m0nesy完成签到,获得积分10
11秒前
12秒前
12秒前
动听的蛟凤应助phoebe采纳,获得50
13秒前
汉堡包应助zzz采纳,获得10
14秒前
15秒前
XY发布了新的文献求助10
15秒前
可靠嘉懿完成签到,获得积分10
15秒前
16秒前
薇薇发布了新的文献求助10
16秒前
16秒前
豫章小菜花完成签到,获得积分20
16秒前
17秒前
17秒前
17秒前
17秒前
朴实山兰完成签到,获得积分10
18秒前
18秒前
20秒前
陆拾壹发布了新的文献求助10
21秒前
21秒前
wangwenzhe发布了新的文献求助10
22秒前
22秒前
zz发布了新的文献求助10
23秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670801
求助须知:如何正确求助?哪些是违规求助? 3227675
关于积分的说明 9776795
捐赠科研通 2937868
什么是DOI,文献DOI怎么找? 1609663
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735928