亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AGHRNet: An attention ghost-HRNet for confirmation of catch‐and‐shake locations in jujube fruits vibration harvesting

摇动 分割 人工智能 计算机视觉 计算机科学 职位(财务) 振动 块(置换群论) 过程(计算) 卡车 模式识别(心理学) 工程类 数学 汽车工程 声学 机械工程 物理 几何学 财务 经济 操作系统
作者
Zhouzhou Zheng,Yaohua Hu,Taifeng Guo,Yichen Qiao,Yong He,Yan Zhang,Yuxiang Huang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:210: 107921-107921 被引量:29
标识
DOI:10.1016/j.compag.2023.107921
摘要

The development of an intelligent jujube fruit harvesting device is a critical step in achieving the whole mechanization process. Catch‐and‐shake harvesting, as an efficient and stable vibration harvesting method, has widely been used to save labor and improve harvesting efficiency in large-scale jujube orchards. However, existing catch‐and‐shake harvesters still rely heavily on the operator's naked eyes to determine the shaking position, which is subjective, highly inefficient and highly labor intensive. To address this problem, this study proposes a computer vision system including truck and branches segmentation, skeleton extraction and vibration position selection to automatically identify appropriate shaking positions. A lightweight attention Ghost-HRNet (AGHRNet) based on deep learning is designed to separate the truck and branches from the complex orchard background. In AGHRNet, an attention Ghost block is proposed to lighten the model and improve segmentation accuracy. Moreover, we also construct a hybrid loss function to solve the pixel-level category imbalance of the trunks, branches and background. To verify the effectiveness of the AGHRNet, ten state-of-the-art semantic segmentation methods, including the FCN8s, SegNet, U-Net, PSPNet, DeepLabv3+, BiSeNet, DDRNet, DANet, SegFormer and HRNet, are compared. Comparative experimental results show that compared with the other state-of-the-art methods, the proposed AGHRNet has higher segmentation accuracy (77.79 % mIoU, 89.46 % mPA) and a smaller model size (9.53 MB) on our datasets. Finally, mask medial axis extraction and the minimum inscribed circle operation are applied to obtain the appropriate vibration location. The computer vision system can provide technical references for catch‐and‐shake harvesting and developing jujube fruit-harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研究水合物的小白完成签到 ,获得积分10
1秒前
1秒前
陈棋清完成签到 ,获得积分10
6秒前
颜寒城发布了新的文献求助10
9秒前
斯文墨镜完成签到,获得积分10
10秒前
白华苍松完成签到,获得积分10
12秒前
U87完成签到 ,获得积分20
15秒前
pluto应助散步的刺猬采纳,获得10
17秒前
chemlove应助白华苍松采纳,获得10
20秒前
大模型应助小李医生采纳,获得10
20秒前
爆米花应助阿溪采纳,获得10
23秒前
30秒前
姜sir完成签到 ,获得积分10
31秒前
人类不宜飞行完成签到 ,获得积分10
35秒前
温东发布了新的文献求助10
36秒前
小李医生完成签到,获得积分10
37秒前
39秒前
小李医生发布了新的文献求助10
42秒前
温东完成签到,获得积分10
43秒前
ggbond完成签到,获得积分10
43秒前
57秒前
目目应助科研通管家采纳,获得10
57秒前
所所应助科研通管家采纳,获得10
57秒前
Hello应助科研通管家采纳,获得10
58秒前
李爱国应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
Qi完成签到,获得积分10
1分钟前
星star完成签到 ,获得积分10
1分钟前
烟花应助江江采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
tracey完成签到 ,获得积分10
1分钟前
1分钟前
研友_VZG7GZ应助Thriving采纳,获得10
1分钟前
一生有鱼发布了新的文献求助10
1分钟前
shl发布了新的文献求助10
1分钟前
雾蓝完成签到,获得积分10
1分钟前
meikoo发布了新的文献求助10
1分钟前
完美世界应助shl采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555687
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390713
捐赠科研通 2831030
什么是DOI,文献DOI怎么找? 1556295
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803