Complex roughening dynamics and wettability mechanism in MoS2 thin films — A system theoretic approach

润湿 材料科学 曲率 复合材料 分形维数 分形 接触角 光学 几何学 数学 物理 数学分析
作者
Abhijeet Das,Jyoti Jaiswal,Ram Pratap Yadav,Ashok Mittal,Ştefan Ţălu,Sanjeev Kumar
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:624: 128989-128989
标识
DOI:10.1016/j.physa.2023.128989
摘要

We utilized fractal geometry to advance insights into the complex roughening and its facilitated wettability mechanism of sputtered MoS2 film surfaces with varying thickness are studied. Fractal parameters indicate the dominance of shadowing at lower thickness while enhancement in vertical growth rate and variation in local irregularities are observed at higher thicknesses along with anomalous roughening up to thickness of 200 nm. In addition, anti-persistent trend of surface heights was observed to be independent of thickness. Multifractal analysis exposed the non-linear variation in multifractality strength and vertical complexities of surface heights. The results corroborates the stereometric analysis revealing the 3D surface topography of analyzed films. The wettability was observed to increase with thickness. In consideration, the roughening expedited wetting trend is defined in light of stereometric parameters and multifractility strength suggesting increases the penetration of water droplets into the surface voids with decline in the surface complexities. The mechanism for increase in contact angle is realized from the augmentation in curvature pressure indicating the existence of large air pressure within the void lying lower than the water droplets as compared to the pressure from the meniscus sides of the droplets. In addition, principal component analysis is utilized to reveal the significance of fractal parameters in probing the surface roughening. The results hold prospects in surface engineering of MoS2 thin films as a function of thickness for enhanced catalytic activity in electrochemical splitting of water for hydrogen evolution reactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
务实盼海发布了新的文献求助10
1秒前
徐徐徐徐发布了新的文献求助10
2秒前
星晴遇见花海完成签到,获得积分10
2秒前
乐乐应助Rrr采纳,获得10
3秒前
难过鸿涛应助srt采纳,获得10
4秒前
5秒前
卡卡发布了新的文献求助10
5秒前
5秒前
7秒前
Jasper应助刘芸芸采纳,获得10
8秒前
m彬m彬完成签到 ,获得积分10
8秒前
9秒前
自信鑫鹏完成签到,获得积分10
9秒前
HYH完成签到,获得积分10
9秒前
Harish完成签到,获得积分10
10秒前
研友_851KE8发布了新的文献求助10
10秒前
10秒前
一段乐多发布了新的文献求助10
10秒前
10秒前
华仔完成签到,获得积分10
10秒前
刘百慧完成签到,获得积分10
10秒前
10秒前
Wyan发布了新的文献求助80
12秒前
成就映秋发布了新的文献求助30
12秒前
科研通AI2S应助坤坤采纳,获得10
12秒前
整齐芷文完成签到,获得积分10
13秒前
科研通AI5应助小马哥36采纳,获得10
13秒前
灵巧荆发布了新的文献求助10
14秒前
小二郎应助侦察兵采纳,获得10
14秒前
爆米花完成签到 ,获得积分10
14秒前
今后应助Evan123采纳,获得10
14秒前
凤凰之玉完成签到 ,获得积分10
15秒前
shi hui应助冬瓜炖排骨采纳,获得10
15秒前
16秒前
dyh6802发布了新的文献求助10
16秒前
冷静雅青发布了新的文献求助10
16秒前
CipherSage应助猪猪hero采纳,获得10
17秒前
领导范儿应助不凡采纳,获得30
17秒前
顾矜应助坚定的亦绿采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794