A Decision Support Framework for Pollution Source Detection via Coupled Forward‐Inverse Optimization and Multi‐Information Fusion

数据挖掘 计算机科学 传感器融合 差异(会计) 贝叶斯概率 数学优化 数学 机器学习 人工智能 会计 业务
作者
zhe zhu,Yu Li,Yan Sun,Zhihong Liu,Chi Zhang
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (6) 被引量:4
标识
DOI:10.1029/2022wr032866
摘要

Abstract Due to the uncertainty in sensor data, low model accuracy, and high parameter heterogeneity in water quality modeling, pollution source detection (PSD) typically results in a problem of multiple possible solutions, which is the so‐called non‐uniqueness effect. Identifying unique solution to PSD problems is fundamentally essential for water quality control in surface water and groundwater systems. This study proposes a decision support framework to reduce the impact of uncertainty and identify a unique solution using a consensus‐based multiple information fusion method. Multiple water quality information sources are fused in the framework via spatial clustering and temporal Bayesian updating. Considering the real‐world complexity, the recession‐curve displacement method is used to handle multi‐sources scenario to enhance the accuracy of the framework. Meanwhile, a coupled forward‐inverse model instead of random sampling is used to improve the solving efficiency of PSD. The framework is validated by a real water pollution event and a number of semi‐hypothetical case studies. The results show that the prediction accuracy of the single‐source and double‐source pollution problems are 88.40% and 82.69%, with an average relative error of 9.75% and 11.42%, respectively. In addition, the uncertainty contribution quantified by a variance decomposition approach suggests that the interaction between parameter and measurement uncertainties has the greatest impact on the PSD results. The results reveal the advantages of the proposed decision framework for government organizations and communities involved in water environment management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
星空物语完成签到,获得积分10
1秒前
1秒前
星辰大海应助柠檬柚子晴采纳,获得10
2秒前
3秒前
和谐的飞瑶完成签到,获得积分10
3秒前
笨笨西装应助MOD采纳,获得10
3秒前
科研通AI5应助ouyangshi采纳,获得10
5秒前
科研通AI5应助会飞的猪采纳,获得10
5秒前
6秒前
超级白昼发布了新的文献求助10
7秒前
上官若男应助Luckqi6688采纳,获得30
8秒前
9秒前
ppsparkling完成签到,获得积分10
9秒前
9秒前
10秒前
浅惜应助1111采纳,获得100
11秒前
KYG科研发布了新的文献求助10
11秒前
qiqiqiqiqi完成签到 ,获得积分10
11秒前
憩在云端发布了新的文献求助10
12秒前
12秒前
研友_kng1r8完成签到,获得积分10
12秒前
耍酷的丹珍完成签到,获得积分20
13秒前
英姑应助spoon1026采纳,获得10
13秒前
追梦发布了新的文献求助30
14秒前
14秒前
djdh驳回了HJM应助
14秒前
快乐的秋翠完成签到,获得积分10
15秒前
17秒前
17秒前
独特惋清发布了新的文献求助10
18秒前
2023204306324发布了新的文献求助10
18秒前
19秒前
zt发布了新的文献求助10
19秒前
糊涂的水之完成签到,获得积分10
21秒前
九九发布了新的文献求助10
22秒前
nenoaowu应助cannon8采纳,获得30
22秒前
我不完成签到,获得积分10
22秒前
小坤同学发布了新的文献求助200
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589034
求助须知:如何正确求助?哪些是违规求助? 3157481
关于积分的说明 9515274
捐赠科研通 2860273
什么是DOI,文献DOI怎么找? 1571736
邀请新用户注册赠送积分活动 737373
科研通“疑难数据库(出版商)”最低求助积分说明 722277