MI-CAT: A transformer-based domain adaptation network for motor imagery classification

计算机科学 域适应 变压器 人工智能 模式识别(心理学) 分类器(UML) 工程类 电气工程 电压
作者
Dongxue Zhang,Huiying Li,Jingmeng Xie
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 451-462 被引量:46
标识
DOI:10.1016/j.neunet.2023.06.005
摘要

Due to its convenience and safety, electroencephalography (EEG) data is one of the most widely used signals in motor imagery (MI) brain–computer interfaces (BCIs). In recent years, methods based on deep learning have been widely applied to the field of BCIs, and some studies have gradually tried to apply Transformer to EEG signal decoding due to its superior global information focusing ability. However, EEG signals vary from subject to subject. Based on Transformer, how to effectively use data from other subjects (source domain) to improve the classification performance of a single subject (target domain) remains a challenge. To fill this gap, we propose a novel architecture called MI-CAT. The architecture innovatively utilizes Transformer’s self-attention and cross-attention mechanisms to interact features to resolve differential distribution between different domains. Specifically, we adopt a patch embedding layer for the extracted source and target features to divide the features into multiple patches. Then, we comprehensively focus on the intra-domain and inter-domain features by stacked multiple Cross-Transformer Blocks (CTBs), which can adaptively conduct bidirectional knowledge transfer and information exchange between domains. Furthermore, we also utilize two non-shared domain-based attention blocks to efficiently capture domain-dependent information, optimizing the features extracted from the source and target domains to assist in feature alignment. To evaluate our method, we conduct extensive experiments on two real public EEG datasets, Dataset IIb and Dataset IIa, achieving competitive performance with an average classification accuracy of 85.26% and 76.81%, respectively. Experimental results demonstrate that our method is a powerful model for decoding EEG signals and facilitates the development of the Transformer for brain–computer interfaces (BCIs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南国之霄发布了新的文献求助10
1秒前
123完成签到,获得积分20
1秒前
你不喂冷风完成签到,获得积分10
2秒前
健壮绍辉应助风中的芷蕾采纳,获得10
2秒前
3秒前
3秒前
Sunflower发布了新的文献求助10
4秒前
EVCai发布了新的文献求助10
4秒前
5秒前
5秒前
23582完成签到,获得积分20
7秒前
花开富贵完成签到 ,获得积分10
7秒前
yan完成签到,获得积分10
8秒前
高兴绿柳发布了新的文献求助10
9秒前
和谐觅夏发布了新的文献求助10
9秒前
乃思完成签到,获得积分10
10秒前
暮时完成签到 ,获得积分10
10秒前
12秒前
Daixi_Chen发布了新的文献求助10
12秒前
沉默是金完成签到,获得积分10
13秒前
kjc发布了新的文献求助20
14秒前
14秒前
汪汪队立大功完成签到,获得积分10
16秒前
科研通AI6应助迅速的不正采纳,获得10
17秒前
风中的芷蕾完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
邓晓霞完成签到,获得积分10
19秒前
20秒前
20秒前
内向的萃关注了科研通微信公众号
21秒前
Xinxxx应助Genius采纳,获得10
22秒前
23秒前
23秒前
果粒橙完成签到 ,获得积分10
23秒前
24秒前
跳跃的访烟完成签到 ,获得积分10
24秒前
大大泡泡完成签到,获得积分10
25秒前
左能发布了新的文献求助10
25秒前
瑶瑶瑶完成签到,获得积分10
26秒前
专一的白发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419966
求助须知:如何正确求助?哪些是违规求助? 4535178
关于积分的说明 14148588
捐赠科研通 4451975
什么是DOI,文献DOI怎么找? 2441982
邀请新用户注册赠送积分活动 1433488
关于科研通互助平台的介绍 1410732