MI-CAT: A transformer-based domain adaptation network for motor imagery classification

计算机科学 变压器 人工智能 脑电图 学习迁移 模式识别(心理学) 深度学习 机器学习 语音识别 工程类 心理学 精神科 电气工程 电压
作者
Dongxue Zhang,Huiying Li,Jingmeng Xie
出处
期刊:Neural Networks [Elsevier BV]
卷期号:165: 451-462 被引量:3
标识
DOI:10.1016/j.neunet.2023.06.005
摘要

Due to its convenience and safety, electroencephalography (EEG) data is one of the most widely used signals in motor imagery (MI) brain–computer interfaces (BCIs). In recent years, methods based on deep learning have been widely applied to the field of BCIs, and some studies have gradually tried to apply Transformer to EEG signal decoding due to its superior global information focusing ability. However, EEG signals vary from subject to subject. Based on Transformer, how to effectively use data from other subjects (source domain) to improve the classification performance of a single subject (target domain) remains a challenge. To fill this gap, we propose a novel architecture called MI-CAT. The architecture innovatively utilizes Transformer’s self-attention and cross-attention mechanisms to interact features to resolve differential distribution between different domains. Specifically, we adopt a patch embedding layer for the extracted source and target features to divide the features into multiple patches. Then, we comprehensively focus on the intra-domain and inter-domain features by stacked multiple Cross-Transformer Blocks (CTBs), which can adaptively conduct bidirectional knowledge transfer and information exchange between domains. Furthermore, we also utilize two non-shared domain-based attention blocks to efficiently capture domain-dependent information, optimizing the features extracted from the source and target domains to assist in feature alignment. To evaluate our method, we conduct extensive experiments on two real public EEG datasets, Dataset IIb and Dataset IIa, achieving competitive performance with an average classification accuracy of 85.26% and 76.81%, respectively. Experimental results demonstrate that our method is a powerful model for decoding EEG signals and facilitates the development of the Transformer for brain–computer interfaces (BCIs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
anna1992发布了新的文献求助10
1秒前
1秒前
2秒前
cquank发布了新的文献求助10
2秒前
SYLH应助dongli6536采纳,获得10
2秒前
water完成签到,获得积分10
3秒前
上官若男应助shine采纳,获得10
3秒前
战战兢兢完成签到 ,获得积分10
3秒前
3秒前
Shinewei完成签到,获得积分10
3秒前
开心蘑菇应助自由的无色采纳,获得30
4秒前
fff完成签到,获得积分10
4秒前
5秒前
小鱼医生发布了新的文献求助10
5秒前
jyu发布了新的文献求助10
5秒前
6秒前
6秒前
xiejinhui发布了新的文献求助10
7秒前
kiki完成签到 ,获得积分10
7秒前
铁甲小宝发布了新的文献求助10
7秒前
Shinewei发布了新的文献求助10
7秒前
8秒前
8秒前
久9完成签到 ,获得积分10
10秒前
10秒前
cquank完成签到,获得积分10
11秒前
ZoraZeng完成签到,获得积分10
11秒前
11秒前
虚心的寒梦完成签到,获得积分10
12秒前
炫哥IRIS完成签到,获得积分10
12秒前
牧童完成签到,获得积分10
12秒前
HenryXiao发布了新的文献求助10
12秒前
顺利紫山发布了新的文献求助10
13秒前
ZZRR完成签到,获得积分10
13秒前
英姑应助耶耶耶耶耶采纳,获得10
14秒前
渝儿发布了新的文献求助10
15秒前
可靠薯片完成签到,获得积分10
15秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650