MI-CAT: A transformer-based domain adaptation network for motor imagery classification

计算机科学 变压器 人工智能 脑电图 学习迁移 模式识别(心理学) 深度学习 机器学习 语音识别 工程类 心理学 精神科 电气工程 电压
作者
Dongxue Zhang,Huiying Li,Jingmeng Xie
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 451-462 被引量:3
标识
DOI:10.1016/j.neunet.2023.06.005
摘要

Due to its convenience and safety, electroencephalography (EEG) data is one of the most widely used signals in motor imagery (MI) brain–computer interfaces (BCIs). In recent years, methods based on deep learning have been widely applied to the field of BCIs, and some studies have gradually tried to apply Transformer to EEG signal decoding due to its superior global information focusing ability. However, EEG signals vary from subject to subject. Based on Transformer, how to effectively use data from other subjects (source domain) to improve the classification performance of a single subject (target domain) remains a challenge. To fill this gap, we propose a novel architecture called MI-CAT. The architecture innovatively utilizes Transformer’s self-attention and cross-attention mechanisms to interact features to resolve differential distribution between different domains. Specifically, we adopt a patch embedding layer for the extracted source and target features to divide the features into multiple patches. Then, we comprehensively focus on the intra-domain and inter-domain features by stacked multiple Cross-Transformer Blocks (CTBs), which can adaptively conduct bidirectional knowledge transfer and information exchange between domains. Furthermore, we also utilize two non-shared domain-based attention blocks to efficiently capture domain-dependent information, optimizing the features extracted from the source and target domains to assist in feature alignment. To evaluate our method, we conduct extensive experiments on two real public EEG datasets, Dataset IIb and Dataset IIa, achieving competitive performance with an average classification accuracy of 85.26% and 76.81%, respectively. Experimental results demonstrate that our method is a powerful model for decoding EEG signals and facilitates the development of the Transformer for brain–computer interfaces (BCIs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星河万里发布了新的文献求助10
1秒前
lily发布了新的文献求助10
3秒前
迷路的沧海完成签到,获得积分10
4秒前
恶恶么v发布了新的文献求助10
4秒前
4秒前
FFF发布了新的文献求助10
5秒前
陈徐钖发布了新的文献求助10
6秒前
6秒前
大模型应助溪风采纳,获得20
7秒前
哇哇哇发布了新的文献求助30
7秒前
QinQin发布了新的文献求助10
7秒前
cure发布了新的文献求助20
9秒前
大模型应助高强采纳,获得10
10秒前
星河万里完成签到,获得积分10
10秒前
11秒前
帅气的可乐完成签到,获得积分10
11秒前
iridium完成签到 ,获得积分10
14秒前
14秒前
ll应助QinQin采纳,获得10
15秒前
科研通AI2S应助科研小菜鸡采纳,获得10
17秒前
yier发布了新的文献求助20
18秒前
18秒前
可爱的函函应助夜雨听笑采纳,获得10
18秒前
19秒前
萧水白发布了新的文献求助100
24秒前
李健的小迷弟应助miracle采纳,获得10
25秒前
OOYWZEHNN发布了新的文献求助10
25秒前
科目三应助88采纳,获得10
25秒前
26秒前
W凯Z完成签到,获得积分10
27秒前
无花果应助呓语采纳,获得10
28秒前
an发布了新的文献求助10
29秒前
cure完成签到,获得积分10
29秒前
dochx完成签到,获得积分10
31秒前
OOYWZEHNN完成签到,获得积分20
33秒前
科研通AI2S应助future采纳,获得10
33秒前
小鱼哥完成签到,获得积分10
36秒前
36秒前
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329374
求助须知:如何正确求助?哪些是违规求助? 2959048
关于积分的说明 8594165
捐赠科研通 2637581
什么是DOI,文献DOI怎么找? 1443623
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656183