亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MI-CAT: A transformer-based domain adaptation network for motor imagery classification

计算机科学 域适应 变压器 人工智能 模式识别(心理学) 分类器(UML) 工程类 电气工程 电压
作者
Dongxue Zhang,Huiying Li,Jingmeng Xie
出处
期刊:Neural Networks [Elsevier]
卷期号:165: 451-462 被引量:46
标识
DOI:10.1016/j.neunet.2023.06.005
摘要

Due to its convenience and safety, electroencephalography (EEG) data is one of the most widely used signals in motor imagery (MI) brain–computer interfaces (BCIs). In recent years, methods based on deep learning have been widely applied to the field of BCIs, and some studies have gradually tried to apply Transformer to EEG signal decoding due to its superior global information focusing ability. However, EEG signals vary from subject to subject. Based on Transformer, how to effectively use data from other subjects (source domain) to improve the classification performance of a single subject (target domain) remains a challenge. To fill this gap, we propose a novel architecture called MI-CAT. The architecture innovatively utilizes Transformer’s self-attention and cross-attention mechanisms to interact features to resolve differential distribution between different domains. Specifically, we adopt a patch embedding layer for the extracted source and target features to divide the features into multiple patches. Then, we comprehensively focus on the intra-domain and inter-domain features by stacked multiple Cross-Transformer Blocks (CTBs), which can adaptively conduct bidirectional knowledge transfer and information exchange between domains. Furthermore, we also utilize two non-shared domain-based attention blocks to efficiently capture domain-dependent information, optimizing the features extracted from the source and target domains to assist in feature alignment. To evaluate our method, we conduct extensive experiments on two real public EEG datasets, Dataset IIb and Dataset IIa, achieving competitive performance with an average classification accuracy of 85.26% and 76.81%, respectively. Experimental results demonstrate that our method is a powerful model for decoding EEG signals and facilitates the development of the Transformer for brain–computer interfaces (BCIs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
5秒前
yeah完成签到 ,获得积分10
6秒前
6秒前
搜集达人应助完美的流沙采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
null应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
9秒前
null应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
kento应助科研通管家采纳,获得50
9秒前
null应助科研通管家采纳,获得10
9秒前
null应助科研通管家采纳,获得10
9秒前
kento应助科研通管家采纳,获得50
9秒前
方向完成签到 ,获得积分10
12秒前
脑洞疼应助五博采纳,获得10
14秒前
所所应助澄如采纳,获得10
14秒前
wangwangwang完成签到,获得积分10
15秒前
21秒前
安静夜梅完成签到,获得积分10
22秒前
丸子完成签到 ,获得积分10
23秒前
安静夜梅发布了新的文献求助10
28秒前
yangzai完成签到 ,获得积分0
30秒前
调皮枫叶完成签到 ,获得积分10
31秒前
wr781586完成签到 ,获得积分10
34秒前
34秒前
35秒前
36秒前
子月之路发布了新的文献求助10
40秒前
笑傲完成签到,获得积分10
43秒前
51秒前
53秒前
55秒前
贪玩的万仇完成签到 ,获得积分10
56秒前
XZY发布了新的文献求助10
57秒前
吴桂学完成签到 ,获得积分10
58秒前
58秒前
灰灰完成签到,获得积分10
59秒前
729发布了新的文献求助10
1分钟前
XZY完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723397
求助须知:如何正确求助?哪些是违规求助? 5276618
关于积分的说明 15298565
捐赠科研通 4871890
什么是DOI,文献DOI怎么找? 2616321
邀请新用户注册赠送积分活动 1566167
关于科研通互助平台的介绍 1523041