亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring

保险丝(电气) 刀具磨损 过程(计算) 特征(语言学) 机制(生物学) 传感器融合 颗粒过滤器 计算机科学 维数(图论) 滤波器(信号处理) 数据挖掘 人工智能 模式识别(心理学) 工程类 计算机视觉 机械加工 机械工程 数学 认识论 操作系统 电气工程 哲学 语言学 纯数学
作者
Tingting Feng,Liang Guo,Hongli Gao,Tao Chen,Yaoxiang Yu,Changgen Li
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:120 (7-8): 5633-5648 被引量:24
标识
DOI:10.1007/s00170-022-09032-3
摘要

In order to accurately monitor the tool wear process, it is usually necessary to collect a variety of sensor signals during the cutting process. Different sensor signals can provide complementary information in the feature space. In addition, monitoring signals are time series data, which also contains a wealth of time dimension tool degradation information. However, how to fuse multi-sensor information in time and space dimensions is a key issue that needs to be solved. In this paper, a new time–space attention mechanism driven multi-feature fusion method is proposed for tool wear monitoring and residual useful life (RUL) prediction. A time–space attention mechanism is innovatively introduced into the tool wear monitoring model, and features are weighted from two dimensions of space and time. It can more accurately capture the complex spatio-temporal relationship between tool wear values and features, so that the model can accurately predict wear values even if it gives up cutting force signals with good trends. The experimental results show that the correlation of the predicted wear and the actual wear is greater than 0.95, and the relative accuracy of the RUL predicted by the predicted wear combined with the particle filter can also be around 0.78. Compared with other feature fusion models, the proposed method realizes the tool wear monitoring more accurately and has better stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZH发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
3秒前
cjh发布了新的文献求助10
19秒前
可靠的寒风完成签到,获得积分10
24秒前
25秒前
caca完成签到,获得积分0
49秒前
55秒前
58秒前
单纯的石头完成签到 ,获得积分10
59秒前
沉鱼CXX完成签到,获得积分10
1分钟前
1分钟前
CATH完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助sdniuidifod采纳,获得10
1分钟前
1分钟前
今后应助科研圈外人采纳,获得10
2分钟前
2分钟前
Akim应助零度采纳,获得10
2分钟前
wbh发布了新的文献求助10
2分钟前
2分钟前
wyx完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
sdniuidifod发布了新的文献求助10
2分钟前
爱笑的斑马完成签到,获得积分10
2分钟前
小二郎应助科研圈外人采纳,获得10
2分钟前
英俊的铭应助wbh采纳,获得10
2分钟前
2分钟前
Demi_Ming完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研圈外人采纳,获得10
2分钟前
3分钟前
3分钟前
田様应助科研圈外人采纳,获得10
3分钟前
小土豆完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470116
求助须知:如何正确求助?哪些是违规求助? 4573050
关于积分的说明 14337956
捐赠科研通 4499966
什么是DOI,文献DOI怎么找? 2465503
邀请新用户注册赠送积分活动 1453845
关于科研通互助平台的介绍 1428427