亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring

保险丝(电气) 刀具磨损 过程(计算) 特征(语言学) 机制(生物学) 传感器融合 颗粒过滤器 计算机科学 维数(图论) 滤波器(信号处理) 数据挖掘 人工智能 模式识别(心理学) 工程类 计算机视觉 机械加工 机械工程 数学 认识论 操作系统 电气工程 哲学 语言学 纯数学
作者
Tingting Feng,Liang Guo,Hongli Gao,Tao Chen,Yaoxiang Yu,Changgen Li
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:120 (7-8): 5633-5648 被引量:24
标识
DOI:10.1007/s00170-022-09032-3
摘要

In order to accurately monitor the tool wear process, it is usually necessary to collect a variety of sensor signals during the cutting process. Different sensor signals can provide complementary information in the feature space. In addition, monitoring signals are time series data, which also contains a wealth of time dimension tool degradation information. However, how to fuse multi-sensor information in time and space dimensions is a key issue that needs to be solved. In this paper, a new time–space attention mechanism driven multi-feature fusion method is proposed for tool wear monitoring and residual useful life (RUL) prediction. A time–space attention mechanism is innovatively introduced into the tool wear monitoring model, and features are weighted from two dimensions of space and time. It can more accurately capture the complex spatio-temporal relationship between tool wear values and features, so that the model can accurately predict wear values even if it gives up cutting force signals with good trends. The experimental results show that the correlation of the predicted wear and the actual wear is greater than 0.95, and the relative accuracy of the RUL predicted by the predicted wear combined with the particle filter can also be around 0.78. Compared with other feature fusion models, the proposed method realizes the tool wear monitoring more accurately and has better stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陳.发布了新的文献求助10
2秒前
12秒前
量子星尘发布了新的文献求助10
28秒前
上官若男应助大晨采纳,获得10
39秒前
Lucas应助科研通管家采纳,获得10
44秒前
59秒前
大晨发布了新的文献求助10
1分钟前
lili发布了新的文献求助10
1分钟前
1分钟前
lili完成签到,获得积分20
1分钟前
cc完成签到,获得积分10
1分钟前
2分钟前
海绵宝宝完成签到 ,获得积分10
2分钟前
Jasper应助阳光的星月采纳,获得10
2分钟前
TXZ06完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
打打应助朴素海亦采纳,获得10
3分钟前
方汀应助朴素海亦采纳,获得10
3分钟前
4分钟前
dd完成签到,获得积分10
4分钟前
4分钟前
开朗大雁完成签到 ,获得积分10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
荷兰香猪完成签到,获得积分10
5分钟前
5分钟前
5分钟前
阳光的星月完成签到,获得积分10
5分钟前
研友_8RyzBZ完成签到,获得积分20
5分钟前
5分钟前
5分钟前
huahuaaixuexi完成签到,获得积分10
5分钟前
5分钟前
情怀应助成成鹅了采纳,获得10
5分钟前
苗龙伟完成签到 ,获得积分10
5分钟前
dd发布了新的文献求助200
5分钟前
852应助成成鹅了采纳,获得30
6分钟前
林妹妹完成签到 ,获得积分10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107