A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring

保险丝(电气) 刀具磨损 过程(计算) 特征(语言学) 机制(生物学) 传感器融合 颗粒过滤器 计算机科学 维数(图论) 滤波器(信号处理) 数据挖掘 人工智能 模式识别(心理学) 工程类 计算机视觉 机械加工 机械工程 数学 认识论 操作系统 电气工程 哲学 语言学 纯数学
作者
Tingting Feng,Liang Guo,Hongli Gao,Tao Chen,Yaoxiang Yu,Changgen Li
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:120 (7-8): 5633-5648 被引量:24
标识
DOI:10.1007/s00170-022-09032-3
摘要

In order to accurately monitor the tool wear process, it is usually necessary to collect a variety of sensor signals during the cutting process. Different sensor signals can provide complementary information in the feature space. In addition, monitoring signals are time series data, which also contains a wealth of time dimension tool degradation information. However, how to fuse multi-sensor information in time and space dimensions is a key issue that needs to be solved. In this paper, a new time–space attention mechanism driven multi-feature fusion method is proposed for tool wear monitoring and residual useful life (RUL) prediction. A time–space attention mechanism is innovatively introduced into the tool wear monitoring model, and features are weighted from two dimensions of space and time. It can more accurately capture the complex spatio-temporal relationship between tool wear values and features, so that the model can accurately predict wear values even if it gives up cutting force signals with good trends. The experimental results show that the correlation of the predicted wear and the actual wear is greater than 0.95, and the relative accuracy of the RUL predicted by the predicted wear combined with the particle filter can also be around 0.78. Compared with other feature fusion models, the proposed method realizes the tool wear monitoring more accurately and has better stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
唐唐发布了新的文献求助10
1秒前
annie完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2752543083发布了新的文献求助10
2秒前
3秒前
今后应助123采纳,获得10
4秒前
4秒前
Chris学长完成签到,获得积分10
4秒前
4秒前
Grace发布了新的文献求助10
5秒前
6秒前
斯文败类应助山河采纳,获得10
6秒前
xlz发布了新的文献求助10
7秒前
hfm发布了新的文献求助30
8秒前
9秒前
9秒前
9秒前
研友_P85D6Z发布了新的文献求助10
10秒前
积极的惜筠完成签到 ,获得积分10
11秒前
11秒前
尘香如故完成签到 ,获得积分10
11秒前
科研通AI6.1应助混子玉采纳,获得10
12秒前
sunzhuxi发布了新的文献求助10
13秒前
mslg33完成签到,获得积分10
13秒前
玥玥玥玥发布了新的文献求助10
14秒前
16秒前
16秒前
哈哈完成签到,获得积分10
17秒前
SHYSHYLONG发布了新的文献求助10
17秒前
BRUCE发布了新的文献求助10
17秒前
18秒前
18秒前
NexusExplorer应助xlz采纳,获得10
19秒前
19秒前
慕青应助朴素的鸡翅采纳,获得10
20秒前
zl987发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735617
求助须知:如何正确求助?哪些是违规求助? 5361598
关于积分的说明 15330603
捐赠科研通 4879809
什么是DOI,文献DOI怎么找? 2622330
邀请新用户注册赠送积分活动 1571336
关于科研通互助平台的介绍 1528174