A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring

保险丝(电气) 刀具磨损 过程(计算) 特征(语言学) 机制(生物学) 传感器融合 颗粒过滤器 计算机科学 维数(图论) 滤波器(信号处理) 数据挖掘 人工智能 模式识别(心理学) 工程类 计算机视觉 机械加工 机械工程 数学 认识论 操作系统 电气工程 哲学 语言学 纯数学
作者
Tingting Feng,Liang Guo,Hongli Gao,Tao Chen,Yaoxiang Yu,Changgen Li
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:120 (7-8): 5633-5648 被引量:24
标识
DOI:10.1007/s00170-022-09032-3
摘要

In order to accurately monitor the tool wear process, it is usually necessary to collect a variety of sensor signals during the cutting process. Different sensor signals can provide complementary information in the feature space. In addition, monitoring signals are time series data, which also contains a wealth of time dimension tool degradation information. However, how to fuse multi-sensor information in time and space dimensions is a key issue that needs to be solved. In this paper, a new time–space attention mechanism driven multi-feature fusion method is proposed for tool wear monitoring and residual useful life (RUL) prediction. A time–space attention mechanism is innovatively introduced into the tool wear monitoring model, and features are weighted from two dimensions of space and time. It can more accurately capture the complex spatio-temporal relationship between tool wear values and features, so that the model can accurately predict wear values even if it gives up cutting force signals with good trends. The experimental results show that the correlation of the predicted wear and the actual wear is greater than 0.95, and the relative accuracy of the RUL predicted by the predicted wear combined with the particle filter can also be around 0.78. Compared with other feature fusion models, the proposed method realizes the tool wear monitoring more accurately and has better stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助独特的从露采纳,获得10
1秒前
1秒前
1秒前
1秒前
田様应助yfn采纳,获得10
1秒前
脑洞疼应助wtl采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
所所应助沉潜采纳,获得10
2秒前
2秒前
故意的黄豆豆完成签到,获得积分10
3秒前
April完成签到 ,获得积分10
3秒前
可爱的函函应助黑胡椒采纳,获得30
3秒前
科研通AI6应助风轩轩采纳,获得10
4秒前
能干蜜蜂发布了新的文献求助10
4秒前
隐形曼青应助yr888采纳,获得10
5秒前
liu.lzy完成签到,获得积分10
5秒前
Honahlee发布了新的文献求助10
5秒前
jpc完成签到,获得积分10
5秒前
俊逸的无心完成签到,获得积分20
5秒前
5秒前
小青椒应助盷昀采纳,获得50
6秒前
6秒前
糜厉完成签到,获得积分10
6秒前
傲娇以寒完成签到 ,获得积分10
7秒前
7秒前
绿L发布了新的文献求助10
7秒前
7秒前
7秒前
小辰发布了新的文献求助10
7秒前
iNk应助帅气善斓采纳,获得20
7秒前
可爱的函函应助花样年华采纳,获得10
8秒前
科研小菜鸡完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836