A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring

保险丝(电气) 刀具磨损 过程(计算) 特征(语言学) 机制(生物学) 传感器融合 颗粒过滤器 计算机科学 维数(图论) 滤波器(信号处理) 数据挖掘 人工智能 模式识别(心理学) 工程类 计算机视觉 机械加工 机械工程 数学 认识论 操作系统 电气工程 哲学 语言学 纯数学
作者
Tingting Feng,Liang Guo,Hongli Gao,Tao Chen,Yaoxiang Yu,Changgen Li
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:120 (7-8): 5633-5648 被引量:24
标识
DOI:10.1007/s00170-022-09032-3
摘要

In order to accurately monitor the tool wear process, it is usually necessary to collect a variety of sensor signals during the cutting process. Different sensor signals can provide complementary information in the feature space. In addition, monitoring signals are time series data, which also contains a wealth of time dimension tool degradation information. However, how to fuse multi-sensor information in time and space dimensions is a key issue that needs to be solved. In this paper, a new time–space attention mechanism driven multi-feature fusion method is proposed for tool wear monitoring and residual useful life (RUL) prediction. A time–space attention mechanism is innovatively introduced into the tool wear monitoring model, and features are weighted from two dimensions of space and time. It can more accurately capture the complex spatio-temporal relationship between tool wear values and features, so that the model can accurately predict wear values even if it gives up cutting force signals with good trends. The experimental results show that the correlation of the predicted wear and the actual wear is greater than 0.95, and the relative accuracy of the RUL predicted by the predicted wear combined with the particle filter can also be around 0.78. Compared with other feature fusion models, the proposed method realizes the tool wear monitoring more accurately and has better stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mxr发布了新的文献求助200
刚刚
完美世界应助超级的藏花采纳,获得10
刚刚
yangyajie发布了新的文献求助10
刚刚
1秒前
健壮的蘑菇完成签到,获得积分10
1秒前
赘婿应助泷生采纳,获得10
2秒前
TT发布了新的文献求助10
3秒前
荷兰香猪完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
qiqiqi发布了新的文献求助30
5秒前
6秒前
希望天下0贩的0应助呼呼采纳,获得10
6秒前
顾矜应助默默的晓兰采纳,获得10
6秒前
kks569发布了新的文献求助10
7秒前
大团子发布了新的文献求助10
7秒前
科研通AI6应助迫切采纳,获得10
7秒前
8秒前
科研通AI6应助寒冷的箴采纳,获得10
8秒前
8秒前
破绽发布了新的文献求助10
8秒前
8秒前
大气的身影完成签到,获得积分20
8秒前
9秒前
桐桐应助星辰采纳,获得10
9秒前
科研通AI2S应助ARIA采纳,获得10
9秒前
lanlanlan完成签到 ,获得积分10
10秒前
dyyisash完成签到 ,获得积分10
11秒前
gwentea发布了新的文献求助10
11秒前
ll发布了新的文献求助10
11秒前
吃货发布了新的文献求助10
12秒前
liuyingke完成签到,获得积分10
12秒前
12秒前
科研通AI6应助Drjason采纳,获得10
12秒前
荷珠发布了新的文献求助30
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
Akim应助yan采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901