A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring

保险丝(电气) 刀具磨损 过程(计算) 特征(语言学) 机制(生物学) 传感器融合 颗粒过滤器 计算机科学 维数(图论) 滤波器(信号处理) 数据挖掘 人工智能 模式识别(心理学) 工程类 计算机视觉 机械加工 机械工程 数学 认识论 操作系统 电气工程 哲学 语言学 纯数学
作者
Tingting Feng,Liang Guo,Hongli Gao,Tao Chen,Yaoxiang Yu,Changgen Li
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:120 (7-8): 5633-5648 被引量:24
标识
DOI:10.1007/s00170-022-09032-3
摘要

In order to accurately monitor the tool wear process, it is usually necessary to collect a variety of sensor signals during the cutting process. Different sensor signals can provide complementary information in the feature space. In addition, monitoring signals are time series data, which also contains a wealth of time dimension tool degradation information. However, how to fuse multi-sensor information in time and space dimensions is a key issue that needs to be solved. In this paper, a new time–space attention mechanism driven multi-feature fusion method is proposed for tool wear monitoring and residual useful life (RUL) prediction. A time–space attention mechanism is innovatively introduced into the tool wear monitoring model, and features are weighted from two dimensions of space and time. It can more accurately capture the complex spatio-temporal relationship between tool wear values and features, so that the model can accurately predict wear values even if it gives up cutting force signals with good trends. The experimental results show that the correlation of the predicted wear and the actual wear is greater than 0.95, and the relative accuracy of the RUL predicted by the predicted wear combined with the particle filter can also be around 0.78. Compared with other feature fusion models, the proposed method realizes the tool wear monitoring more accurately and has better stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Astrid发布了新的文献求助10
1秒前
Jisong发布了新的文献求助10
1秒前
我不吃葱发布了新的文献求助10
1秒前
1秒前
汉堡包应助潇洒水蜜桃采纳,获得10
1秒前
2秒前
脑洞疼应助田不甜采纳,获得10
3秒前
Hello应助工艺员采纳,获得30
3秒前
easynature完成签到,获得积分10
3秒前
暖阳发布了新的文献求助10
3秒前
3秒前
猪猪猪发布了新的文献求助10
3秒前
科研小虫发布了新的文献求助10
3秒前
慕青应助沉默诗柳采纳,获得10
4秒前
4秒前
SYH完成签到,获得积分20
4秒前
Miranda完成签到,获得积分10
4秒前
gaomeigeng发布了新的文献求助10
4秒前
打打应助clover采纳,获得10
5秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
527020100完成签到 ,获得积分10
7秒前
Miranda发布了新的文献求助10
7秒前
7秒前
裂冰完成签到,获得积分10
8秒前
8秒前
科研通AI6.1应助云淡风轻采纳,获得10
9秒前
esbd完成签到,获得积分10
9秒前
小马甲应助壹壹采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
顶针发布了新的文献求助10
11秒前
大气靳发布了新的文献求助10
11秒前
CipherSage应助LOU采纳,获得10
12秒前
乐乐乐发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785091
求助须知:如何正确求助?哪些是违规求助? 5685673
关于积分的说明 15466575
捐赠科研通 4914208
什么是DOI,文献DOI怎么找? 2645113
邀请新用户注册赠送积分活动 1592892
关于科研通互助平台的介绍 1547293