Spherical harmonics-based deep learning achieves generalized and accurate diffusion tensor imaging

磁共振弥散成像 球谐函数 张量(固有定义) 计算机科学 谐波 人工智能 扩散 物理 数学分析 数学 磁共振成像 几何学 医学 放射科 量子力学 电压 热力学
作者
Yunwei Chen,Jialong Li,Qiqi Lu,Ye Wu,Xiaoming Liu,Yuanyuan Gao,Yanqiu Feng,Zhicheng Zhang,Xinyuan Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3471769
摘要

Diffusion tensor imaging (DTI) is a prevalent magnetic resonance imaging (MRI) technique, widely used in clinical and neuroscience research. However, the reliability of DTI is affected by the low signal-to-noise ratio inherent in diffusion-weighted (DW) images. Deep learning (DL) has shown promise in improving the quality of DTI, but its limited generalization to variable acquisition schemes hinders practical applications. This study aims to develop a generalized, accurate, and efficient DL-based DTI method. By leveraging the representation of voxel-wise diffusion MRI (dMRI) signals on the sphere using spherical harmonics (SH), we propose a novel approach that utilizes SH coefficient maps as input to a network for predicting the diffusion tensor (DT) field, enabling improved generalization. Extensive experiments were conducted on simulated and in-vivo datasets, covering various DTI application scenarios. The results demonstrate that the proposed SH-DTI method achieves advanced performance in both quantitative and qualitative analyses of DTI. Moreover, it exhibits remarkable generalization capabilities across different acquisition schemes, centers, and scanners, ensuring its broad applicability in diverse settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助maofeng采纳,获得10
1秒前
2秒前
ED应助李甄好采纳,获得10
2秒前
大模型应助李甄好采纳,获得10
2秒前
nkuwangkai发布了新的文献求助10
2秒前
SciGPT应助野原新之助采纳,获得10
3秒前
Jenaloe发布了新的文献求助10
3秒前
lsrlsr完成签到,获得积分10
4秒前
4秒前
大大怪发布了新的文献求助30
4秒前
5秒前
Ava应助玛琪玛小姐的狗采纳,获得10
5秒前
Lily发布了新的文献求助10
5秒前
饱满一手完成签到 ,获得积分10
6秒前
Janson完成签到,获得积分10
6秒前
文艺的明杰完成签到,获得积分10
6秒前
精明一寡发布了新的文献求助10
7秒前
7秒前
8秒前
顾矜应助椰子采纳,获得10
8秒前
研友_VZG7GZ应助虎啊虎啊采纳,获得10
8秒前
漫溢阳光完成签到 ,获得积分0
9秒前
贰鸟应助科研小白采纳,获得10
9秒前
学术小钻风关注了科研通微信公众号
9秒前
10秒前
毛子涵发布了新的文献求助20
10秒前
小次之山发布了新的文献求助50
10秒前
10秒前
10秒前
10秒前
Vaibhav发布了新的文献求助10
11秒前
从前有个线粒体完成签到,获得积分10
11秒前
12秒前
Majoe完成签到,获得积分10
12秒前
落寞鞋子发布了新的文献求助10
13秒前
酷酷学发布了新的文献求助10
13秒前
Jasper应助由北采纳,获得10
13秒前
13秒前
hss完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582