Bioinformatics and machine learning approaches reveal key genes and underlying molecular mechanisms of atherosclerosis: A review

基因 基因表达 计算生物学 免疫系统 生物 遗传学 生物信息学
作者
Xiaoxue Su,Meng Zhang,Guinan Yang,Xuebin Cui,Xiaoqing Yuan,Liunianbo Du,Yuanmin Pei
出处
期刊:Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:103 (31): e38744-e38744
标识
DOI:10.1097/md.0000000000038744
摘要

Atherosclerosis (AS) causes thickening and hardening of the arterial wall due to accumulation of extracellular matrix, cholesterol, and cells. In this study, we used comprehensive bioinformatics tools and machine learning approaches to explore key genes and molecular network mechanisms underlying AS in multiple data sets. Next, we analyzed the correlation between AS and immune fine cell infiltration, and finally performed drug prediction for the disease. We downloaded GSE20129 and GSE90074 datasets from the Gene expression Omnibus database, then employed the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts algorithm to analyze 22 immune cells. To enrich for functional characteristics, the black module correlated most strongly with T cells was screened with weighted gene co-expression networks analysis. Functional enrichment analysis revealed that the genes were mainly enriched in cell adhesion and T-cell-related pathways, as well as NF-κ B signaling. We employed the Lasso regression and random forest algorithms to screen out 5 intersection genes (CCDC106, RASL11A, RIC3, SPON1, and TMEM144). Pathway analysis in gene set variation analysis and gene set enrichment analysis revealed that the key genes were mainly enriched in inflammation, and immunity, among others. The selected key genes were analyzed by single-cell RNA sequencing technology. We also analyzed differential expression between these 5 key genes and those involved in iron death. We found that ferroptosis genes ACSL4, CBS, FTH1 and TFRC were differentially expressed between AS and the control groups, RIC3 and FTH1 were significantly negatively correlated, whereas SPON1 and VDAC3 were significantly positively correlated. Finally, we used the Connectivity Map database for drug prediction. These results provide new insights into AS genetic regulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依妍完成签到,获得积分10
1秒前
李Aa发布了新的文献求助10
1秒前
1秒前
闫132发布了新的文献求助10
2秒前
研友_8oYPrn发布了新的文献求助10
2秒前
田様应助luoye采纳,获得10
2秒前
4秒前
cc0514gr完成签到,获得积分10
4秒前
科研通AI5应助QI采纳,获得10
6秒前
Ywffffff完成签到 ,获得积分10
6秒前
7秒前
春鸮鸟完成签到 ,获得积分10
7秒前
研友_8oYPrn完成签到,获得积分10
9秒前
情怀应助李Aa采纳,获得10
10秒前
小智发布了新的文献求助10
10秒前
LX77bx完成签到,获得积分10
15秒前
是霂霂吖给是霂霂吖的求助进行了留言
16秒前
16秒前
xtdexy完成签到,获得积分10
18秒前
周周完成签到,获得积分10
18秒前
19秒前
和谐白云完成签到,获得积分10
19秒前
20秒前
dy发布了新的文献求助10
20秒前
20秒前
20秒前
zwy完成签到,获得积分10
21秒前
小智完成签到,获得积分10
22秒前
在水一方应助ttt采纳,获得10
22秒前
wefs发布了新的文献求助20
23秒前
medlive2020发布了新的文献求助10
23秒前
白雾发布了新的文献求助10
25秒前
Zbmd发布了新的文献求助10
25秒前
27秒前
27秒前
正常兔子完成签到,获得积分10
28秒前
28秒前
好学的人发布了新的文献求助10
29秒前
zho发布了新的文献求助10
30秒前
姜夔应助灰灰采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512536
求助须知:如何正确求助?哪些是违规求助? 3094932
关于积分的说明 9225266
捐赠科研通 2789738
什么是DOI,文献DOI怎么找? 1530865
邀请新用户注册赠送积分活动 711128
科研通“疑难数据库(出版商)”最低求助积分说明 706605