Metaheuristic-based ensemble learning: an extensive review of methods and applications

元启发式 计算机科学 机器学习 人工智能 集成学习 修剪 背景(考古学) 并行元启发式 元优化 农学 生物 古生物学
作者
Sahar Saeed Rezk,Kamal Samy Selim
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
标识
DOI:10.1007/s00521-024-10203-4
摘要

Abstract Ensemble learning has become a cornerstone in various classification and regression tasks, leveraging its robust learning capacity across disciplines. However, the computational time and memory constraints associated with almost all-learners-based ensembles necessitate efficient approaches. Ensemble pruning, a crucial step, involves selecting a subset of base learners to address these limitations. This study underscores the significance of optimization-based methods in ensemble pruning, with a specific focus on metaheuristics as high-level problem-solving techniques. It reviews the intersection of ensemble learning and metaheuristics, specifically in the context of selective ensembles, marking a unique contribution in this direction of research. Through categorizing metaheuristic-based selective ensembles, identifying their frequently used algorithms and software programs, and highlighting their uses across diverse application domains, this research serves as a comprehensive resource for researchers and offers insights into recent developments and applications. Also, by addressing pivotal research gaps, the study identifies exploring selective ensemble techniques for cluster analysis, investigating cutting-edge metaheuristics and hybrid multi-class models, and optimizing ensemble size as well as hyper-parameters within metaheuristic iterations as prospective research directions. These directions offer a robust roadmap for advancing the understanding and application of metaheuristic-based selective ensembles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
旺仔先生完成签到,获得积分0
刚刚
7尔阿婆完成签到,获得积分10
刚刚
1秒前
1秒前
zhi完成签到,获得积分10
1秒前
guoguo完成签到,获得积分20
1秒前
深情安青应助坚定自信采纳,获得10
1秒前
yuan1226完成签到,获得积分10
2秒前
学习学个P发布了新的文献求助30
2秒前
顾矜应助Re采纳,获得10
3秒前
王小冉发布了新的文献求助10
3秒前
依然完成签到,获得积分10
3秒前
3秒前
4秒前
000发布了新的文献求助10
4秒前
bluesky发布了新的文献求助10
4秒前
孙朱珠发布了新的文献求助10
5秒前
归尘发布了新的文献求助10
5秒前
隐形曼青应助爱听歌时光采纳,获得10
5秒前
桃李不言完成签到,获得积分10
5秒前
5秒前
6秒前
张琳完成签到,获得积分10
7秒前
7秒前
guoguo发布了新的文献求助10
7秒前
8秒前
灵巧的雁易完成签到,获得积分10
8秒前
badercao完成签到,获得积分10
8秒前
Wuwuwu发布了新的文献求助10
8秒前
Re完成签到,获得积分10
8秒前
8秒前
老鱼娜娜完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
归尘发布了新的文献求助20
10秒前
行毅文完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助凶狠的蓉采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572