Metaheuristic-based ensemble learning: an extensive review of methods and applications

元启发式 计算机科学 机器学习 人工智能 集成学习 修剪 背景(考古学) 并行元启发式 元优化 农学 生物 古生物学
作者
Sahar Saeed Rezk,Kamal Samy Selim
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:36 (29): 17931-17959 被引量:1
标识
DOI:10.1007/s00521-024-10203-4
摘要

Abstract Ensemble learning has become a cornerstone in various classification and regression tasks, leveraging its robust learning capacity across disciplines. However, the computational time and memory constraints associated with almost all-learners-based ensembles necessitate efficient approaches. Ensemble pruning, a crucial step, involves selecting a subset of base learners to address these limitations. This study underscores the significance of optimization-based methods in ensemble pruning, with a specific focus on metaheuristics as high-level problem-solving techniques. It reviews the intersection of ensemble learning and metaheuristics, specifically in the context of selective ensembles, marking a unique contribution in this direction of research. Through categorizing metaheuristic-based selective ensembles, identifying their frequently used algorithms and software programs, and highlighting their uses across diverse application domains, this research serves as a comprehensive resource for researchers and offers insights into recent developments and applications. Also, by addressing pivotal research gaps, the study identifies exploring selective ensemble techniques for cluster analysis, investigating cutting-edge metaheuristics and hybrid multi-class models, and optimizing ensemble size as well as hyper-parameters within metaheuristic iterations as prospective research directions. These directions offer a robust roadmap for advancing the understanding and application of metaheuristic-based selective ensembles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
酷波er应助嘉嘉sone采纳,获得30
1秒前
油炸马铃薯棍完成签到,获得积分10
1秒前
蛋黄完成签到,获得积分10
1秒前
科研通AI6应助Cyber_relic采纳,获得10
1秒前
无极微光应助LaKI采纳,获得20
2秒前
含蓄绿兰发布了新的文献求助10
2秒前
2秒前
2秒前
QQ发布了新的文献求助10
3秒前
yimengze完成签到,获得积分10
3秒前
幽默尔蓝发布了新的文献求助10
3秒前
星空棒棒糖完成签到,获得积分10
3秒前
3秒前
asdfzxcv应助xuan采纳,获得10
3秒前
4秒前
英姑应助复杂雪一采纳,获得10
5秒前
耍酷谷槐完成签到,获得积分10
5秒前
Akim应助John采纳,获得30
5秒前
小黄车完成签到,获得积分10
5秒前
klio完成签到 ,获得积分10
6秒前
传奇3应助lamitky采纳,获得10
6秒前
6秒前
无花果应助lili采纳,获得10
6秒前
FashionBoy应助QQ采纳,获得10
6秒前
6秒前
7秒前
科研通AI6应助mylian采纳,获得10
7秒前
九霄发布了新的文献求助10
7秒前
7秒前
ABC的风格发布了新的文献求助10
7秒前
迷路豁完成签到 ,获得积分10
8秒前
囧囧应助未来EBM采纳,获得200
8秒前
qqy发布了新的文献求助10
8秒前
8秒前
8秒前
有魅力的雨梅完成签到,获得积分10
8秒前
赘婿应助李li采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647599
求助须知:如何正确求助?哪些是违规求助? 4773824
关于积分的说明 15040250
捐赠科研通 4806401
什么是DOI,文献DOI怎么找? 2570250
邀请新用户注册赠送积分活动 1527084
关于科研通互助平台的介绍 1486162