How can companies handle paradoxes to enhance trust in artificial intelligence solutions? A qualitative research

定性研究 知识管理 业务 心理学 社会学 管理科学 公共关系 管理 计算机科学 政治学 工程类 经济 社会科学
作者
Z. Bakonyi
出处
期刊:Journal of Organizational Change Management [Emerald (MCB UP)]
标识
DOI:10.1108/jocm-01-2023-0026
摘要

Purpose Exploring trust's impact on AI project success. Companies can't leverage AI without employee trust. While analytics features like speed and precision can build trust, they may also lower it during implementation, leading to paradoxes. This study identifies these paradoxes and proposes strategies to manage them. Design/methodology/approach This paper applies a grounded theory approach based on 35 interviews with senior managers, users, and implementers of analytics solutions of large European companies. Findings It identifies seven paradoxes, namely, knowledge substitution, task substitution, domain expert, time, error, reference, and experience paradoxes and provides some real-life examples of managing them. Research limitations/implications The limitations of this paper include its focus on machine learning projects from the last two years, potentially overlooking longer-term trends. The study's micro-level perspective on implementation projects may limit broader insights, and the research primarily examines European contexts, potentially missing out on global perspectives. Additionally, the qualitative methodology used may limit the generalizability of findings. Finally, while the paper identifies trust paradoxes, it does not offer an exhaustive exploration of their dynamics or quantitative measurements of their strength. Practical implications Several tactics to tackle trust paradoxes in AI projects have been identified, including a change roadmap, data “load tests”, early expert involvement, model descriptions, piloting, plans for machine-human cooperation, learning time, and a backup system. Applying these can boost trust in AI, giving organizations an analytical edge. Social implications The AI-driven digital transformation is inevitable; the only question is whether we will lead, participate, or fall behind. This paper explores how organizations can adapt to technological changes and how employees can leverage AI to enhance efficiency with minimal disruption. Originality/value This paper offers a theoretical overview of trust in analytics and analyses over 30 interviews from real-life analytics projects, contributing to a field typically dominated by statistical or anecdotal evidence. It provides practical insights with scientific rigour derived from the interviews and the author's nearly decade-long consulting career.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张嘉元发布了新的文献求助20
1秒前
搜集达人应助123采纳,获得10
1秒前
111发布了新的文献求助30
1秒前
1秒前
dookkumi发布了新的文献求助20
1秒前
Ava应助Dding采纳,获得10
2秒前
单纯青雪完成签到,获得积分10
2秒前
3秒前
迅速向日葵完成签到,获得积分20
3秒前
jc完成签到,获得积分10
4秒前
科研通AI2S应助直率的问筠采纳,获得10
4秒前
4秒前
研狗发布了新的文献求助20
4秒前
4秒前
5秒前
5秒前
就这样完成签到,获得积分10
5秒前
曲奇饼干完成签到 ,获得积分10
5秒前
小确幸发布了新的文献求助20
5秒前
5秒前
刘华银发布了新的文献求助10
5秒前
超级尔白发布了新的文献求助10
6秒前
爱学习的Audrey完成签到,获得积分10
6秒前
椰奶西瓜完成签到,获得积分10
6秒前
ding应助louyu采纳,获得10
6秒前
6秒前
xkkk完成签到,获得积分10
7秒前
7秒前
缓慢钢笔发布了新的文献求助10
7秒前
wanghao4799发布了新的文献求助10
7秒前
wanci应助迅速向日葵采纳,获得10
7秒前
7秒前
顺顺黎黎完成签到,获得积分10
7秒前
8秒前
欢呼鼠标发布了新的文献求助50
8秒前
8秒前
8秒前
jasontian1990完成签到,获得积分10
9秒前
妳咔咔发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505946
求助须知:如何正确求助?哪些是违规求助? 4601465
关于积分的说明 14476523
捐赠科研通 4535397
什么是DOI,文献DOI怎么找? 2485351
邀请新用户注册赠送积分活动 1468337
关于科研通互助平台的介绍 1440869