How can companies handle paradoxes to enhance trust in artificial intelligence solutions? A qualitative research

定性研究 知识管理 业务 心理学 社会学 管理科学 公共关系 管理 计算机科学 政治学 工程类 经济 社会科学
作者
Z. Bakonyi
出处
期刊:Journal of Organizational Change Management [Emerald Publishing Limited]
标识
DOI:10.1108/jocm-01-2023-0026
摘要

Purpose Exploring trust's impact on AI project success. Companies can't leverage AI without employee trust. While analytics features like speed and precision can build trust, they may also lower it during implementation, leading to paradoxes. This study identifies these paradoxes and proposes strategies to manage them. Design/methodology/approach This paper applies a grounded theory approach based on 35 interviews with senior managers, users, and implementers of analytics solutions of large European companies. Findings It identifies seven paradoxes, namely, knowledge substitution, task substitution, domain expert, time, error, reference, and experience paradoxes and provides some real-life examples of managing them. Research limitations/implications The limitations of this paper include its focus on machine learning projects from the last two years, potentially overlooking longer-term trends. The study's micro-level perspective on implementation projects may limit broader insights, and the research primarily examines European contexts, potentially missing out on global perspectives. Additionally, the qualitative methodology used may limit the generalizability of findings. Finally, while the paper identifies trust paradoxes, it does not offer an exhaustive exploration of their dynamics or quantitative measurements of their strength. Practical implications Several tactics to tackle trust paradoxes in AI projects have been identified, including a change roadmap, data “load tests”, early expert involvement, model descriptions, piloting, plans for machine-human cooperation, learning time, and a backup system. Applying these can boost trust in AI, giving organizations an analytical edge. Social implications The AI-driven digital transformation is inevitable; the only question is whether we will lead, participate, or fall behind. This paper explores how organizations can adapt to technological changes and how employees can leverage AI to enhance efficiency with minimal disruption. Originality/value This paper offers a theoretical overview of trust in analytics and analyses over 30 interviews from real-life analytics projects, contributing to a field typically dominated by statistical or anecdotal evidence. It provides practical insights with scientific rigour derived from the interviews and the author's nearly decade-long consulting career.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助张靖采纳,获得10
1秒前
万能图书馆应助DanaLin采纳,获得10
1秒前
远山等故归完成签到,获得积分20
2秒前
明明发布了新的文献求助10
2秒前
落崖惊风发布了新的文献求助10
2秒前
chenqiumu应助皮卡丘比特采纳,获得100
2秒前
3秒前
小橙完成签到 ,获得积分10
4秒前
cainiao发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
懵懂的钢笔完成签到 ,获得积分10
5秒前
Harper发布了新的文献求助30
6秒前
6秒前
blue完成签到 ,获得积分10
6秒前
pterionGao完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
漂亮糖豆完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
SJJ发布了新的文献求助10
11秒前
11秒前
开放的雅柏完成签到 ,获得积分10
12秒前
俞凡白完成签到,获得积分10
12秒前
jansorchen发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
15秒前
消音器发布了新的文献求助10
16秒前
大力的海蓝完成签到,获得积分10
16秒前
在水一方应助古往今来采纳,获得10
16秒前
16秒前
葛三发布了新的文献求助10
17秒前
暖暖完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363