How can companies handle paradoxes to enhance trust in artificial intelligence solutions? A qualitative research

定性研究 知识管理 业务 心理学 社会学 管理科学 公共关系 管理 计算机科学 政治学 工程类 经济 社会科学
作者
Z. Bakonyi
出处
期刊:Journal of Organizational Change Management [Emerald Publishing Limited]
标识
DOI:10.1108/jocm-01-2023-0026
摘要

Purpose Exploring trust's impact on AI project success. Companies can't leverage AI without employee trust. While analytics features like speed and precision can build trust, they may also lower it during implementation, leading to paradoxes. This study identifies these paradoxes and proposes strategies to manage them. Design/methodology/approach This paper applies a grounded theory approach based on 35 interviews with senior managers, users, and implementers of analytics solutions of large European companies. Findings It identifies seven paradoxes, namely, knowledge substitution, task substitution, domain expert, time, error, reference, and experience paradoxes and provides some real-life examples of managing them. Research limitations/implications The limitations of this paper include its focus on machine learning projects from the last two years, potentially overlooking longer-term trends. The study's micro-level perspective on implementation projects may limit broader insights, and the research primarily examines European contexts, potentially missing out on global perspectives. Additionally, the qualitative methodology used may limit the generalizability of findings. Finally, while the paper identifies trust paradoxes, it does not offer an exhaustive exploration of their dynamics or quantitative measurements of their strength. Practical implications Several tactics to tackle trust paradoxes in AI projects have been identified, including a change roadmap, data “load tests”, early expert involvement, model descriptions, piloting, plans for machine-human cooperation, learning time, and a backup system. Applying these can boost trust in AI, giving organizations an analytical edge. Social implications The AI-driven digital transformation is inevitable; the only question is whether we will lead, participate, or fall behind. This paper explores how organizations can adapt to technological changes and how employees can leverage AI to enhance efficiency with minimal disruption. Originality/value This paper offers a theoretical overview of trust in analytics and analyses over 30 interviews from real-life analytics projects, contributing to a field typically dominated by statistical or anecdotal evidence. It provides practical insights with scientific rigour derived from the interviews and the author's nearly decade-long consulting career.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
三笠完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
霍华淞完成签到,获得积分10
1秒前
1秒前
1秒前
Xhouniao发布了新的文献求助10
1秒前
1秒前
<小天才>完成签到,获得积分10
2秒前
3秒前
沉静的元灵完成签到,获得积分10
3秒前
标致香完成签到,获得积分20
3秒前
wanglf发布了新的文献求助10
4秒前
wjx发布了新的文献求助10
5秒前
wjx发布了新的文献求助10
5秒前
wjx发布了新的文献求助10
5秒前
wjx发布了新的文献求助10
5秒前
wjx发布了新的文献求助10
5秒前
wjx发布了新的文献求助10
5秒前
wjx发布了新的文献求助10
5秒前
wjx发布了新的文献求助10
5秒前
wjx发布了新的文献求助10
5秒前
wjx发布了新的文献求助20
6秒前
wjx发布了新的文献求助10
6秒前
wjx发布了新的文献求助20
6秒前
wjx发布了新的文献求助10
6秒前
wjx发布了新的文献求助10
6秒前
汉堡包应助CRane采纳,获得10
7秒前
Ava应助huzhennn采纳,获得10
7秒前
小曾发布了新的文献求助10
8秒前
Xhouniao完成签到,获得积分10
8秒前
雪落完成签到,获得积分10
8秒前
王大京发布了新的文献求助10
8秒前
8秒前
搞怪莫茗应助sweat采纳,获得10
9秒前
大橙子应助sweat采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019