How can companies handle paradoxes to enhance trust in artificial intelligence solutions? A qualitative research

定性研究 知识管理 业务 心理学 社会学 管理科学 公共关系 管理 计算机科学 政治学 工程类 经济 社会科学
作者
Z. Bakonyi
出处
期刊:Journal of Organizational Change Management [Emerald (MCB UP)]
标识
DOI:10.1108/jocm-01-2023-0026
摘要

Purpose Exploring trust's impact on AI project success. Companies can't leverage AI without employee trust. While analytics features like speed and precision can build trust, they may also lower it during implementation, leading to paradoxes. This study identifies these paradoxes and proposes strategies to manage them. Design/methodology/approach This paper applies a grounded theory approach based on 35 interviews with senior managers, users, and implementers of analytics solutions of large European companies. Findings It identifies seven paradoxes, namely, knowledge substitution, task substitution, domain expert, time, error, reference, and experience paradoxes and provides some real-life examples of managing them. Research limitations/implications The limitations of this paper include its focus on machine learning projects from the last two years, potentially overlooking longer-term trends. The study's micro-level perspective on implementation projects may limit broader insights, and the research primarily examines European contexts, potentially missing out on global perspectives. Additionally, the qualitative methodology used may limit the generalizability of findings. Finally, while the paper identifies trust paradoxes, it does not offer an exhaustive exploration of their dynamics or quantitative measurements of their strength. Practical implications Several tactics to tackle trust paradoxes in AI projects have been identified, including a change roadmap, data “load tests”, early expert involvement, model descriptions, piloting, plans for machine-human cooperation, learning time, and a backup system. Applying these can boost trust in AI, giving organizations an analytical edge. Social implications The AI-driven digital transformation is inevitable; the only question is whether we will lead, participate, or fall behind. This paper explores how organizations can adapt to technological changes and how employees can leverage AI to enhance efficiency with minimal disruption. Originality/value This paper offers a theoretical overview of trust in analytics and analyses over 30 interviews from real-life analytics projects, contributing to a field typically dominated by statistical or anecdotal evidence. It provides practical insights with scientific rigour derived from the interviews and the author's nearly decade-long consulting career.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
YH完成签到,获得积分10
刚刚
刚刚
周文鑫发布了新的文献求助10
1秒前
1秒前
宋宋发布了新的文献求助10
1秒前
重要的炳完成签到 ,获得积分10
1秒前
超体完成签到 ,获得积分10
1秒前
1秒前
顺心冬卉发布了新的文献求助10
2秒前
汉堡包应助zehua309采纳,获得10
2秒前
2秒前
2秒前
2秒前
充电宝应助知秋采纳,获得10
2秒前
科研通AI6应助天空之城采纳,获得10
2秒前
天天发布了新的文献求助10
3秒前
清心完成签到,获得积分20
3秒前
dsfsd发布了新的文献求助10
3秒前
NexusExplorer应助黄伟凯采纳,获得10
4秒前
4秒前
李健应助ayayaya采纳,获得10
4秒前
4秒前
4秒前
纯真晓灵发布了新的文献求助10
4秒前
科研通AI6应助1397采纳,获得10
4秒前
5秒前
祁无敌完成签到,获得积分0
5秒前
5秒前
hyacinth11111完成签到,获得积分10
5秒前
小豆发布了新的文献求助10
5秒前
6秒前
6秒前
葵屿发布了新的文献求助10
6秒前
lingmuhuahua发布了新的文献求助10
6秒前
田様应助顺利毕业采纳,获得10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616