亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How can companies handle paradoxes to enhance trust in artificial intelligence solutions? A qualitative research

定性研究 知识管理 业务 心理学 社会学 管理科学 公共关系 管理 计算机科学 政治学 工程类 经济 社会科学
作者
Z. Bakonyi
出处
期刊:Journal of Organizational Change Management [Emerald (MCB UP)]
标识
DOI:10.1108/jocm-01-2023-0026
摘要

Purpose Exploring trust's impact on AI project success. Companies can't leverage AI without employee trust. While analytics features like speed and precision can build trust, they may also lower it during implementation, leading to paradoxes. This study identifies these paradoxes and proposes strategies to manage them. Design/methodology/approach This paper applies a grounded theory approach based on 35 interviews with senior managers, users, and implementers of analytics solutions of large European companies. Findings It identifies seven paradoxes, namely, knowledge substitution, task substitution, domain expert, time, error, reference, and experience paradoxes and provides some real-life examples of managing them. Research limitations/implications The limitations of this paper include its focus on machine learning projects from the last two years, potentially overlooking longer-term trends. The study's micro-level perspective on implementation projects may limit broader insights, and the research primarily examines European contexts, potentially missing out on global perspectives. Additionally, the qualitative methodology used may limit the generalizability of findings. Finally, while the paper identifies trust paradoxes, it does not offer an exhaustive exploration of their dynamics or quantitative measurements of their strength. Practical implications Several tactics to tackle trust paradoxes in AI projects have been identified, including a change roadmap, data “load tests”, early expert involvement, model descriptions, piloting, plans for machine-human cooperation, learning time, and a backup system. Applying these can boost trust in AI, giving organizations an analytical edge. Social implications The AI-driven digital transformation is inevitable; the only question is whether we will lead, participate, or fall behind. This paper explores how organizations can adapt to technological changes and how employees can leverage AI to enhance efficiency with minimal disruption. Originality/value This paper offers a theoretical overview of trust in analytics and analyses over 30 interviews from real-life analytics projects, contributing to a field typically dominated by statistical or anecdotal evidence. It provides practical insights with scientific rigour derived from the interviews and the author's nearly decade-long consulting career.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小洛完成签到 ,获得积分10
1秒前
绿毛水怪完成签到,获得积分10
1秒前
lsc完成签到,获得积分10
5秒前
小fei完成签到,获得积分10
8秒前
麻辣薯条完成签到,获得积分10
11秒前
时尚身影完成签到,获得积分10
14秒前
15秒前
流苏完成签到,获得积分0
17秒前
流苏2完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
30秒前
AAA完成签到,获得积分10
36秒前
阳光萌萌完成签到,获得积分10
39秒前
44秒前
辉辉应助keke采纳,获得10
50秒前
52秒前
55秒前
56秒前
阳光萌萌发布了新的文献求助10
1分钟前
AAA发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Jihad发布了新的文献求助10
1分钟前
1分钟前
辣辣完成签到,获得积分10
1分钟前
小二郎应助AAA采纳,获得10
1分钟前
研友_VZG7GZ应助阳光萌萌采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
ZXneuro完成签到,获得积分10
1分钟前
1分钟前
1分钟前
aishaniya发布了新的文献求助10
2分钟前
可爱的函函应助小正采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
默mo完成签到 ,获得积分10
2分钟前
Krim完成签到 ,获得积分0
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606564
求助须知:如何正确求助?哪些是违规求助? 4691031
关于积分的说明 14866772
捐赠科研通 4707326
什么是DOI,文献DOI怎么找? 2542867
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276