How can companies handle paradoxes to enhance trust in artificial intelligence solutions? A qualitative research

定性研究 知识管理 业务 心理学 社会学 管理科学 公共关系 管理 计算机科学 政治学 工程类 经济 社会科学
作者
Z. Bakonyi
出处
期刊:Journal of Organizational Change Management [Emerald (MCB UP)]
标识
DOI:10.1108/jocm-01-2023-0026
摘要

Purpose Exploring trust's impact on AI project success. Companies can't leverage AI without employee trust. While analytics features like speed and precision can build trust, they may also lower it during implementation, leading to paradoxes. This study identifies these paradoxes and proposes strategies to manage them. Design/methodology/approach This paper applies a grounded theory approach based on 35 interviews with senior managers, users, and implementers of analytics solutions of large European companies. Findings It identifies seven paradoxes, namely, knowledge substitution, task substitution, domain expert, time, error, reference, and experience paradoxes and provides some real-life examples of managing them. Research limitations/implications The limitations of this paper include its focus on machine learning projects from the last two years, potentially overlooking longer-term trends. The study's micro-level perspective on implementation projects may limit broader insights, and the research primarily examines European contexts, potentially missing out on global perspectives. Additionally, the qualitative methodology used may limit the generalizability of findings. Finally, while the paper identifies trust paradoxes, it does not offer an exhaustive exploration of their dynamics or quantitative measurements of their strength. Practical implications Several tactics to tackle trust paradoxes in AI projects have been identified, including a change roadmap, data “load tests”, early expert involvement, model descriptions, piloting, plans for machine-human cooperation, learning time, and a backup system. Applying these can boost trust in AI, giving organizations an analytical edge. Social implications The AI-driven digital transformation is inevitable; the only question is whether we will lead, participate, or fall behind. This paper explores how organizations can adapt to technological changes and how employees can leverage AI to enhance efficiency with minimal disruption. Originality/value This paper offers a theoretical overview of trust in analytics and analyses over 30 interviews from real-life analytics projects, contributing to a field typically dominated by statistical or anecdotal evidence. It provides practical insights with scientific rigour derived from the interviews and the author's nearly decade-long consulting career.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪猪完成签到,获得积分20
刚刚
刚刚
芪苓完成签到,获得积分20
1秒前
wyz完成签到,获得积分20
1秒前
1秒前
Mic应助XHX采纳,获得10
2秒前
2秒前
深情安青应助www采纳,获得10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
顾矜应助明理的绮南采纳,获得10
3秒前
无可反驳发布了新的文献求助10
3秒前
4秒前
Maxine完成签到 ,获得积分10
4秒前
我没钱完成签到 ,获得积分10
4秒前
wwwwww完成签到,获得积分20
4秒前
是赵先森呀完成签到 ,获得积分10
5秒前
Wguan发布了新的文献求助10
6秒前
7秒前
Hello应助嘿嘿啊哈采纳,获得10
7秒前
7秒前
淡淡化蛹发布了新的文献求助30
8秒前
科研一号发布了新的文献求助10
8秒前
努力学习完成签到,获得积分10
9秒前
没有下不到的文献完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
烟花应助bmj采纳,获得10
10秒前
大模型应助坦率晓霜采纳,获得10
11秒前
11秒前
11秒前
pluto应助ichia采纳,获得10
11秒前
wwwwww关注了科研通微信公众号
12秒前
14秒前
14秒前
15秒前
李爱国应助熬夜拜拜采纳,获得10
15秒前
煎饼狗子发布了新的文献求助10
16秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186