Adaptive orthogonal directional total variation with kernel regression for CT image denoising

核(代数) 加权 数学 核回归 降噪 回归 算法 方向(向量空间) 迭代重建 人工智能 模式识别(心理学) 计算机科学 统计 几何学 物理 组合数学 声学
作者
Xiying Xue,Dongjiang Ji,Chunyu Xu,Yuqing Zhao,Yimin Li,Chunhong Hu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (5): 1253-1271
标识
DOI:10.3233/xst-230416
摘要

BACKGROUND: Low-dose computed tomography (CT) has been successful in reducing radiation exposure for patients. However, the use of reconstructions from sparse angle sampling in low-dose CT often leads to severe streak artifacts in the reconstructed images. OBJECTIVE: In order to address this issue and preserve image edge details, this study proposes an adaptive orthogonal directional total variation method with kernel regression. METHODS: The CT reconstructed images are initially processed through kernel regression to obtain the N-term Taylor series, which serves as a local representation of the regression function. By expanding the series to the second order, we obtain the desired estimate of the regression function and localized information on the first and second derivatives. To mitigate the noise impact on these derivatives, kernel regression is performed again to update the first and second derivatives. Subsequently, the original reconstructed image, its local approximation, and the updated derivatives are summed using a weighting scheme to derive the image used for calculating orientation information. For further removal of stripe artifacts, the study introduces the adaptive orthogonal directional total variation (AODTV) method, which denoises along both the edge direction and the normal direction, guided by the previously obtained orientation. RESULTS: Both simulation and real experiments have obtained good results. The results of two real experiments show that the proposed method has obtained PSNR values of 34.5408 dB and 29.4634 dB, which are 1.2392–5.9333 dB and 2.828–6.7995 dB higher than the contrast denoising algorithm, respectively, indicating that the proposed method has good denoising performance. CONCLUSIONS: The study demonstrates the effectiveness of the method in eliminating strip artifacts and preserving the fine details of the images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹筏过海应助邹安采纳,获得30
1秒前
小豪号完成签到,获得积分20
1秒前
1秒前
1397发布了新的文献求助10
1秒前
1秒前
1秒前
hhh发布了新的文献求助30
1秒前
陶毅完成签到,获得积分10
2秒前
CipherSage应助小c采纳,获得10
2秒前
冷静机器猫完成签到,获得积分10
2秒前
2秒前
长情的冰淇淋完成签到 ,获得积分10
2秒前
3秒前
空心阁人完成签到,获得积分10
3秒前
亮亮来咯完成签到,获得积分10
4秒前
Nancy发布了新的文献求助10
4秒前
核桃发布了新的文献求助10
4秒前
暗号完成签到,获得积分10
4秒前
5秒前
张张发布了新的文献求助10
5秒前
搜集达人应助Qing采纳,获得10
5秒前
15169928657完成签到,获得积分20
5秒前
6秒前
lhxing发布了新的文献求助10
6秒前
DAI正杰发布了新的文献求助10
6秒前
6秒前
赵世初发布了新的文献求助10
7秒前
ding应助gilderf采纳,获得10
7秒前
xiaocongx发布了新的文献求助10
7秒前
luo发布了新的文献求助10
7秒前
7秒前
8秒前
浅时光发布了新的文献求助10
9秒前
hkh发布了新的文献求助10
9秒前
9秒前
李健的粉丝团团长应助hhh采纳,获得10
9秒前
9秒前
JamesPei应助Pluto采纳,获得10
11秒前
科研渣渣发布了新的文献求助10
11秒前
陈某发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490