Adaptive orthogonal directional total variation with kernel regression for CT image denoising

核(代数) 加权 数学 核回归 降噪 回归 算法 方向(向量空间) 迭代重建 人工智能 模式识别(心理学) 计算机科学 统计 几何学 物理 组合数学 声学
作者
Xiying Xue,Dongjiang Ji,Chunyu Xu,Chunhong Hu,Yimin Li,Chunhong Hu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 1-19
标识
DOI:10.3233/xst-230416
摘要

BACKGROUND: Low-dose computed tomography (CT) has been successful in reducing radiation exposure for patients. However, the use of reconstructions from sparse angle sampling in low-dose CT often leads to severe streak artifacts in the reconstructed images. OBJECTIVE: In order to address this issue and preserve image edge details, this study proposes an adaptive orthogonal directional total variation method with kernel regression. METHODS: The CT reconstructed images are initially processed through kernel regression to obtain the N-term Taylor series, which serves as a local representation of the regression function. By expanding the series to the second order, we obtain the desired estimate of the regression function and localized information on the first and second derivatives. To mitigate the noise impact on these derivatives, kernel regression is performed again to update the first and second derivatives. Subsequently, the original reconstructed image, its local approximation, and the updated derivatives are summed using a weighting scheme to derive the image used for calculating orientation information. For further removal of stripe artifacts, the study introduces the adaptive orthogonal directional total variation (AODTV) method, which denoises along both the edge direction and the normal direction, guided by the previously obtained orientation. RESULTS: Both simulation and real experiments have obtained good results. The results of two real experiments show that the proposed method has obtained PSNR values of 34.5408 dB and 29.4634 dB, which are 1.2392–5.9333 dB and 2.828–6.7995 dB higher than the contrast denoising algorithm, respectively, indicating that the proposed method has good denoising performance. CONCLUSIONS: The study demonstrates the effectiveness of the method in eliminating strip artifacts and preserving the fine details of the images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张才豪完成签到,获得积分10
刚刚
小马完成签到,获得积分10
刚刚
大模型应助asdfasdfj采纳,获得10
1秒前
Mistletoe完成签到 ,获得积分10
1秒前
隐形曼青应助诸乌采纳,获得10
2秒前
2秒前
yar完成签到,获得积分0
2秒前
3秒前
爆米花应助xiaodaiduyan采纳,获得10
4秒前
yxsh发布了新的文献求助10
4秒前
zoe666完成签到,获得积分10
5秒前
优美飞薇完成签到,获得积分10
7秒前
传奇3应助赵李奕安采纳,获得10
7秒前
8秒前
zoe666发布了新的文献求助10
9秒前
yxsh完成签到,获得积分10
10秒前
瘦瘦毛豆完成签到,获得积分10
11秒前
史萌完成签到,获得积分10
12秒前
12秒前
acchangg应助treelet007采纳,获得10
13秒前
伶俐的冰之完成签到,获得积分10
14秒前
16秒前
富贵儿完成签到 ,获得积分10
16秒前
iyNew_xx完成签到,获得积分10
19秒前
wwwaat发布了新的文献求助10
19秒前
19秒前
20秒前
CipherSage应助周琦采纳,获得10
20秒前
asdfasdfj完成签到,获得积分10
21秒前
缓缓发布了新的文献求助10
22秒前
gb完成签到 ,获得积分10
23秒前
asdfasdfj发布了新的文献求助10
24秒前
26秒前
fkwwdamocles发布了新的文献求助10
26秒前
诚心靳发布了新的文献求助10
27秒前
脑洞疼应助优美飞薇采纳,获得10
27秒前
31秒前
33秒前
Cynthia完成签到,获得积分10
33秒前
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721