已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive orthogonal directional total variation with kernel regression for CT image denoising

核(代数) 加权 数学 核回归 降噪 回归 算法 方向(向量空间) 迭代重建 人工智能 模式识别(心理学) 计算机科学 统计 几何学 物理 组合数学 声学
作者
Xiying Xue,Dongjiang Ji,Chunyu Xu,Chunhong Hu,Yimin Li,Chunhong Hu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 1-19
标识
DOI:10.3233/xst-230416
摘要

BACKGROUND: Low-dose computed tomography (CT) has been successful in reducing radiation exposure for patients. However, the use of reconstructions from sparse angle sampling in low-dose CT often leads to severe streak artifacts in the reconstructed images. OBJECTIVE: In order to address this issue and preserve image edge details, this study proposes an adaptive orthogonal directional total variation method with kernel regression. METHODS: The CT reconstructed images are initially processed through kernel regression to obtain the N-term Taylor series, which serves as a local representation of the regression function. By expanding the series to the second order, we obtain the desired estimate of the regression function and localized information on the first and second derivatives. To mitigate the noise impact on these derivatives, kernel regression is performed again to update the first and second derivatives. Subsequently, the original reconstructed image, its local approximation, and the updated derivatives are summed using a weighting scheme to derive the image used for calculating orientation information. For further removal of stripe artifacts, the study introduces the adaptive orthogonal directional total variation (AODTV) method, which denoises along both the edge direction and the normal direction, guided by the previously obtained orientation. RESULTS: Both simulation and real experiments have obtained good results. The results of two real experiments show that the proposed method has obtained PSNR values of 34.5408 dB and 29.4634 dB, which are 1.2392–5.9333 dB and 2.828–6.7995 dB higher than the contrast denoising algorithm, respectively, indicating that the proposed method has good denoising performance. CONCLUSIONS: The study demonstrates the effectiveness of the method in eliminating strip artifacts and preserving the fine details of the images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嗯哼应助李铁柱采纳,获得20
2秒前
SciGPT应助拼搏流沙采纳,获得10
9秒前
Oliver完成签到 ,获得积分10
10秒前
10秒前
皮咻发布了新的文献求助10
11秒前
season完成签到,获得积分10
13秒前
18秒前
科研通AI2S应助11100采纳,获得10
18秒前
Joker完成签到,获得积分10
18秒前
Jasper应助ohh采纳,获得10
18秒前
19秒前
努力的扣扣酱完成签到 ,获得积分10
20秒前
服部平次发布了新的文献求助10
23秒前
27秒前
红红完成签到,获得积分20
27秒前
28秒前
29秒前
32秒前
哲别发布了新的文献求助10
34秒前
恋雅颖月完成签到 ,获得积分10
34秒前
飞翔的发布了新的文献求助10
34秒前
chenchen发布了新的文献求助10
35秒前
CodeCraft应助season采纳,获得10
35秒前
37秒前
拼搏流沙发布了新的文献求助10
39秒前
红红发布了新的文献求助30
40秒前
ZhaoPeng完成签到,获得积分10
41秒前
后会无期发布了新的文献求助20
45秒前
Chen完成签到 ,获得积分10
45秒前
疯惊完成签到 ,获得积分10
57秒前
开朗的灵竹完成签到,获得积分10
58秒前
58秒前
鸭鸭要学习鸭完成签到,获得积分10
58秒前
58秒前
zhusealin完成签到 ,获得积分10
59秒前
abiorz完成签到,获得积分10
59秒前
窗外是蔚蓝色完成签到,获得积分10
1分钟前
1分钟前
wing00024发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3077651
求助须知:如何正确求助?哪些是违规求助? 2730474
关于积分的说明 7512888
捐赠科研通 2378679
什么是DOI,文献DOI怎么找? 1261382
科研通“疑难数据库(出版商)”最低求助积分说明 611496
版权声明 597248