清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive orthogonal directional total variation with kernel regression for CT image denoising

核(代数) 加权 数学 核回归 降噪 回归 算法 方向(向量空间) 迭代重建 人工智能 模式识别(心理学) 计算机科学 统计 几何学 物理 组合数学 声学
作者
Xiying Xue,Dongjiang Ji,Chunyu Xu,Yuqing Zhao,Yimin Li,Chunhong Hu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (5): 1253-1271
标识
DOI:10.3233/xst-230416
摘要

BACKGROUND: Low-dose computed tomography (CT) has been successful in reducing radiation exposure for patients. However, the use of reconstructions from sparse angle sampling in low-dose CT often leads to severe streak artifacts in the reconstructed images. OBJECTIVE: In order to address this issue and preserve image edge details, this study proposes an adaptive orthogonal directional total variation method with kernel regression. METHODS: The CT reconstructed images are initially processed through kernel regression to obtain the N-term Taylor series, which serves as a local representation of the regression function. By expanding the series to the second order, we obtain the desired estimate of the regression function and localized information on the first and second derivatives. To mitigate the noise impact on these derivatives, kernel regression is performed again to update the first and second derivatives. Subsequently, the original reconstructed image, its local approximation, and the updated derivatives are summed using a weighting scheme to derive the image used for calculating orientation information. For further removal of stripe artifacts, the study introduces the adaptive orthogonal directional total variation (AODTV) method, which denoises along both the edge direction and the normal direction, guided by the previously obtained orientation. RESULTS: Both simulation and real experiments have obtained good results. The results of two real experiments show that the proposed method has obtained PSNR values of 34.5408 dB and 29.4634 dB, which are 1.2392–5.9333 dB and 2.828–6.7995 dB higher than the contrast denoising algorithm, respectively, indicating that the proposed method has good denoising performance. CONCLUSIONS: The study demonstrates the effectiveness of the method in eliminating strip artifacts and preserving the fine details of the images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzmyyds发布了新的文献求助10
6秒前
neversay4ever完成签到 ,获得积分10
9秒前
zzmyyds完成签到,获得积分10
16秒前
小青椒应助Kkk118采纳,获得30
31秒前
gmc完成签到 ,获得积分10
45秒前
46秒前
maggiexjl完成签到,获得积分10
55秒前
Perry完成签到,获得积分10
1分钟前
lwh104完成签到,获得积分0
1分钟前
xiliyusheng完成签到 ,获得积分10
1分钟前
Perry发布了新的文献求助30
1分钟前
1分钟前
1分钟前
elizabeth339发布了新的文献求助50
2分钟前
2分钟前
2分钟前
2分钟前
顾矜应助可靠的寒风采纳,获得10
2分钟前
3分钟前
monica发布了新的文献求助10
3分钟前
CodeCraft应助monica采纳,获得10
3分钟前
wlscj应助科研通管家采纳,获得20
4分钟前
科研通AI6应助zzx采纳,获得10
4分钟前
搜集达人应助elizabeth339采纳,获得50
4分钟前
Perry完成签到,获得积分10
5分钟前
5分钟前
monica发布了新的文献求助10
5分钟前
nbing发布了新的文献求助10
5分钟前
5分钟前
nbing完成签到,获得积分10
5分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
6分钟前
6分钟前
elizabeth339发布了新的文献求助50
6分钟前
Axel完成签到,获得积分10
6分钟前
wlscj应助科研通管家采纳,获得20
6分钟前
Kkk118完成签到,获得积分10
6分钟前
zzx发布了新的文献求助10
6分钟前
cheeries完成签到 ,获得积分10
7分钟前
7分钟前
沙海沉戈完成签到,获得积分0
7分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5233614
求助须知:如何正确求助?哪些是违规求助? 4402476
关于积分的说明 13700042
捐赠科研通 4269273
什么是DOI,文献DOI怎么找? 2343029
邀请新用户注册赠送积分活动 1340062
关于科研通互助平台的介绍 1297074