Adaptive orthogonal directional total variation with kernel regression for CT image denoising

核(代数) 加权 数学 核回归 降噪 回归 算法 方向(向量空间) 迭代重建 人工智能 模式识别(心理学) 计算机科学 统计 几何学 物理 组合数学 声学
作者
Xiying Xue,Dongjiang Ji,Chunyu Xu,Chunhong Hu,Yimin Li,Chunhong Hu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 1-19
标识
DOI:10.3233/xst-230416
摘要

BACKGROUND: Low-dose computed tomography (CT) has been successful in reducing radiation exposure for patients. However, the use of reconstructions from sparse angle sampling in low-dose CT often leads to severe streak artifacts in the reconstructed images. OBJECTIVE: In order to address this issue and preserve image edge details, this study proposes an adaptive orthogonal directional total variation method with kernel regression. METHODS: The CT reconstructed images are initially processed through kernel regression to obtain the N-term Taylor series, which serves as a local representation of the regression function. By expanding the series to the second order, we obtain the desired estimate of the regression function and localized information on the first and second derivatives. To mitigate the noise impact on these derivatives, kernel regression is performed again to update the first and second derivatives. Subsequently, the original reconstructed image, its local approximation, and the updated derivatives are summed using a weighting scheme to derive the image used for calculating orientation information. For further removal of stripe artifacts, the study introduces the adaptive orthogonal directional total variation (AODTV) method, which denoises along both the edge direction and the normal direction, guided by the previously obtained orientation. RESULTS: Both simulation and real experiments have obtained good results. The results of two real experiments show that the proposed method has obtained PSNR values of 34.5408 dB and 29.4634 dB, which are 1.2392–5.9333 dB and 2.828–6.7995 dB higher than the contrast denoising algorithm, respectively, indicating that the proposed method has good denoising performance. CONCLUSIONS: The study demonstrates the effectiveness of the method in eliminating strip artifacts and preserving the fine details of the images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
反杀闰土的猹完成签到 ,获得积分20
刚刚
所所应助cc采纳,获得10
1秒前
邵裘完成签到,获得积分10
1秒前
丘比特应助yin采纳,获得10
1秒前
2秒前
2秒前
2秒前
希望天下0贩的0应助sss采纳,获得20
2秒前
拼搏向前发布了新的文献求助10
2秒前
紫罗兰花海完成签到 ,获得积分10
3秒前
琪琪完成签到,获得积分10
4秒前
4秒前
爆米花应助高兴藏花采纳,获得10
4秒前
orixero应助Rrr采纳,获得10
4秒前
5秒前
张今天也要做科研呀完成签到,获得积分10
5秒前
humorlife完成签到,获得积分10
5秒前
打打应助给我找采纳,获得10
6秒前
酷波er应助谦让的含海采纳,获得10
6秒前
6秒前
shrike发布了新的文献求助10
6秒前
心灵美半邪完成签到 ,获得积分10
8秒前
wanci应助星晴遇见花海采纳,获得10
8秒前
8秒前
MILL完成签到,获得积分20
8秒前
卡卡发布了新的文献求助10
8秒前
今后应助九城采纳,获得10
9秒前
9秒前
我是125应助凶狠的乐巧采纳,获得10
9秒前
9秒前
开心的火龙果完成签到,获得积分10
10秒前
科研通AI2S应助长夜变清早采纳,获得10
10秒前
su发布了新的文献求助10
10秒前
明理的访风完成签到,获得积分10
10秒前
小马哥完成签到,获得积分10
11秒前
11秒前
jy发布了新的文献求助10
12秒前
西柚完成签到,获得积分0
12秒前
12秒前
大脸妹发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794