Adaptive orthogonal directional total variation with kernel regression for CT image denoising

核(代数) 加权 数学 核回归 降噪 回归 算法 方向(向量空间) 迭代重建 人工智能 模式识别(心理学) 计算机科学 统计 几何学 物理 组合数学 声学
作者
Xiying Xue,Dongjiang Ji,Chunyu Xu,Chunhong Hu,Yimin Li,Chunhong Hu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:: 1-19
标识
DOI:10.3233/xst-230416
摘要

BACKGROUND: Low-dose computed tomography (CT) has been successful in reducing radiation exposure for patients. However, the use of reconstructions from sparse angle sampling in low-dose CT often leads to severe streak artifacts in the reconstructed images. OBJECTIVE: In order to address this issue and preserve image edge details, this study proposes an adaptive orthogonal directional total variation method with kernel regression. METHODS: The CT reconstructed images are initially processed through kernel regression to obtain the N-term Taylor series, which serves as a local representation of the regression function. By expanding the series to the second order, we obtain the desired estimate of the regression function and localized information on the first and second derivatives. To mitigate the noise impact on these derivatives, kernel regression is performed again to update the first and second derivatives. Subsequently, the original reconstructed image, its local approximation, and the updated derivatives are summed using a weighting scheme to derive the image used for calculating orientation information. For further removal of stripe artifacts, the study introduces the adaptive orthogonal directional total variation (AODTV) method, which denoises along both the edge direction and the normal direction, guided by the previously obtained orientation. RESULTS: Both simulation and real experiments have obtained good results. The results of two real experiments show that the proposed method has obtained PSNR values of 34.5408 dB and 29.4634 dB, which are 1.2392–5.9333 dB and 2.828–6.7995 dB higher than the contrast denoising algorithm, respectively, indicating that the proposed method has good denoising performance. CONCLUSIONS: The study demonstrates the effectiveness of the method in eliminating strip artifacts and preserving the fine details of the images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
toto发布了新的文献求助10
刚刚
harmony发布了新的文献求助10
1秒前
xiaowei666完成签到,获得积分10
1秒前
李123完成签到,获得积分20
1秒前
gao发布了新的文献求助100
2秒前
2秒前
ODN发布了新的文献求助10
2秒前
sanqiusanri完成签到,获得积分10
3秒前
3秒前
uulli完成签到,获得积分10
4秒前
4秒前
4秒前
李健应助研友_Zrlk7L采纳,获得10
5秒前
脸小呆呆完成签到 ,获得积分10
6秒前
科研通AI2S应助殷勤的可兰采纳,获得10
6秒前
健忘的柠檬完成签到,获得积分20
6秒前
6秒前
ws_WS_发布了新的文献求助30
7秒前
7秒前
7秒前
可可完成签到,获得积分10
7秒前
YY发布了新的文献求助10
8秒前
小陆发布了新的文献求助10
8秒前
852应助棋士采纳,获得10
8秒前
子平完成签到 ,获得积分0
8秒前
YY-Bubble完成签到,获得积分10
9秒前
zink发布了新的文献求助10
9秒前
ED应助修道院的豌豆采纳,获得20
10秒前
10秒前
Tourist应助lienafeihu采纳,获得10
11秒前
hbzyydx46发布了新的文献求助10
11秒前
积极晓绿完成签到,获得积分10
11秒前
嘉木完成签到 ,获得积分10
11秒前
柯幼萱发布了新的文献求助10
11秒前
爆米花应助如风随水采纳,获得10
12秒前
素龙发布了新的文献求助10
12秒前
酷酷白凡完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951098
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082428
捐赠科研通 3226957
什么是DOI,文献DOI怎么找? 1784092
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801069