Learning with Explicit Shape Priors for Medical Image Segmentation

先验概率 图像分割 人工智能 计算机视觉 计算机科学 分割 图像(数学) 医学影像学 图像处理 尺度空间分割 模式识别(心理学) 贝叶斯概率
作者
Xin You,Junjun He,Jie Yang,Yun Gu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3469214
摘要

Medical image segmentation is a fundamental task for medical image analysis and surgical planning. In recent years, UNet-based networks have prevailed in the field of medical image segmentation. However, convolutional neural networks (CNNs) suffer from limited receptive fields, which fail to model the long-range dependency of organs or tumors. Besides, these models are heavily dependent on the training of the final segmentation head. And existing methods can not well address aforementioned limitations simultaneously. Hence, in our work, we proposed a novel shape prior module (SPM), which can explicitly introduce shape priors to promote the segmentation performance of UNet-based models. The explicit shape priors consist of global and local shape priors. The former with coarse shape representations provides networks with capabilities to model global contexts. The latter with finer shape information serves as additional guidance to relieve the heavy dependence on the learnable prototype in the segmentation head. To evaluate the effectiveness of SPM, we conduct experiments on three challenging public datasets. And our proposed model achieves state-of-the-art performance. Furthermore, SPM can serve as a plug-and-play structure into classic CNNs and Transformer-based backbones, facilitating the segmentation task on different datasets. Source codes are available at https://github. com/AlexYouXin/Explicit-Shape-Priors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李善聪发布了新的文献求助10
刚刚
JamesPei应助魁梧的皮带采纳,获得10
3秒前
Flin发布了新的文献求助10
3秒前
3秒前
sukuen完成签到,获得积分10
4秒前
研友_VZG7GZ应助Shi采纳,获得10
5秒前
5秒前
6秒前
Jasper应助赵某人采纳,获得10
6秒前
7秒前
酷酷颦完成签到,获得积分10
7秒前
香菜不明白完成签到,获得积分10
8秒前
Owen应助山暮而归采纳,获得10
8秒前
Owen应助CZC采纳,获得10
9秒前
今后应助子凯采纳,获得10
9秒前
9秒前
alex完成签到,获得积分10
10秒前
科研通AI2S应助等待的凝芙采纳,获得10
10秒前
虚幻幻嫣发布了新的文献求助10
12秒前
12秒前
袁华发布了新的文献求助10
12秒前
12秒前
12秒前
活力听白完成签到,获得积分10
12秒前
13秒前
13秒前
ZSC完成签到,获得积分20
13秒前
14秒前
wang发布了新的文献求助10
14秒前
哈哈发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
大模型应助羊羊采纳,获得10
16秒前
活力听白发布了新的文献求助10
17秒前
爆米花应助开心妙旋采纳,获得30
18秒前
77发布了新的文献求助10
19秒前
19秒前
CZC完成签到,获得积分10
20秒前
八岁发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470472
求助须知:如何正确求助?哪些是违规求助? 3063446
关于积分的说明 9083480
捐赠科研通 2753873
什么是DOI,文献DOI怎么找? 1511131
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698147