An adapted large language model facilitates multiple medical tasks in diabetes care

计算机科学 糖尿病 语言模型 自然语言处理 医学 内分泌学
作者
Wei Lai,Zhen Ying,M. He,Yutong Chen,Qian Yang,Hong Ye,Jiaping Lu,Xiaoying Li,Weiran Huang,Ying Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2409.13191
摘要

Diabetes is a chronic disease that poses a significant global health burden, and optimizing diabetes management requires multi-stakeholder collaboration. Large language models (LLMs) have shown promise in various healthcare scenarios, but their effectiveness across a diverse range of diabetes tasks remains unproven. In this study, we introduced a framework to train and validate diabetes-specific LLMs. We first developed a comprehensive data processing pipeline that includes data collection, filtering, augmentation and refinement. This approach contributes to creating a high-quality, diabetes-specific dataset, and several evaluation benchmarks entirely from scratch. Utilizing the collected training dataset, we fine-tuned a diabetes-specific LLM family that demonstrated state-of-the-art proficiency in understanding and processing various diabetes tasks compared to other LLMs. Furthermore, clinical studies showed the potential applications of our models in diabetes care, including providing personalized healthcare, assisting medical education, and streamlining clinical tasks. In conclusion, our study introduced a framework to develop and evaluate a diabetes-specific LLM family, and highlighted its potential to enhance clinical practice and provide personalized, data-driven support for diabetes support when facing different end users. The code is provided via GitHub at https://github.com/waltonfuture/Diabetica.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
spiritpope发布了新的文献求助10
1秒前
夏林发布了新的文献求助20
1秒前
科研通AI5应助xinyu采纳,获得10
1秒前
tamo完成签到,获得积分10
1秒前
1秒前
清爽的姒发布了新的文献求助10
2秒前
li发布了新的文献求助30
2秒前
2秒前
2秒前
3秒前
tyx完成签到,获得积分10
3秒前
清风明月完成签到,获得积分10
3秒前
3秒前
gq0401应助9527采纳,获得10
4秒前
linxue完成签到,获得积分10
4秒前
隐形曼青应助小米儿丫丫采纳,获得10
4秒前
Muccio发布了新的文献求助10
5秒前
林深时见鹿完成签到,获得积分10
5秒前
yuanyuan发布了新的文献求助10
5秒前
阿文完成签到,获得积分10
6秒前
6秒前
充电宝应助微笑的冰之采纳,获得10
6秒前
兮槿发布了新的文献求助10
7秒前
斯文败类应助happyboy2008采纳,获得10
7秒前
594zqz完成签到,获得积分10
7秒前
7秒前
行稳致远发布了新的文献求助10
7秒前
8秒前
刘畅发布了新的文献求助10
9秒前
开心妙之发布了新的文献求助10
9秒前
爆米花应助玲子7采纳,获得30
10秒前
zmm发布了新的文献求助30
10秒前
Bowman完成签到,获得积分10
11秒前
12秒前
lzzzzz发布了新的文献求助30
12秒前
12秒前
12秒前
可爱的函函应助忧心的襄采纳,获得10
13秒前
斯文败类应助娜行采纳,获得10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487250
求助须知:如何正确求助?哪些是违规求助? 3075205
关于积分的说明 9140168
捐赠科研通 2767444
什么是DOI,文献DOI怎么找? 1518666
邀请新用户注册赠送积分活动 703213
科研通“疑难数据库(出版商)”最低求助积分说明 701689