An adapted large language model facilitates multiple medical tasks in diabetes care

计算机科学 糖尿病 语言模型 自然语言处理 医学 内分泌学
作者
Wei Lai,Zhen Ying,M. He,Yutong Chen,Qian Yang,Hong Ye,Jiaping Lu,Xiaoying Li,Weiran Huang,Ying Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2409.13191
摘要

Diabetes is a chronic disease that poses a significant global health burden, and optimizing diabetes management requires multi-stakeholder collaboration. Large language models (LLMs) have shown promise in various healthcare scenarios, but their effectiveness across a diverse range of diabetes tasks remains unproven. In this study, we introduced a framework to train and validate diabetes-specific LLMs. We first developed a comprehensive data processing pipeline that includes data collection, filtering, augmentation and refinement. This approach contributes to creating a high-quality, diabetes-specific dataset, and several evaluation benchmarks entirely from scratch. Utilizing the collected training dataset, we fine-tuned a diabetes-specific LLM family that demonstrated state-of-the-art proficiency in understanding and processing various diabetes tasks compared to other LLMs. Furthermore, clinical studies showed the potential applications of our models in diabetes care, including providing personalized healthcare, assisting medical education, and streamlining clinical tasks. In conclusion, our study introduced a framework to develop and evaluate a diabetes-specific LLM family, and highlighted its potential to enhance clinical practice and provide personalized, data-driven support for diabetes support when facing different end users. The code is provided via GitHub at https://github.com/waltonfuture/Diabetica.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GAW完成签到,获得积分10
1秒前
blUe完成签到,获得积分10
1秒前
橘子树完成签到,获得积分10
1秒前
jiangjiang完成签到 ,获得积分10
1秒前
000完成签到,获得积分10
2秒前
zhuxl完成签到,获得积分10
2秒前
传奇3应助小胡采纳,获得10
2秒前
PeGe完成签到,获得积分10
2秒前
MYYY完成签到,获得积分10
2秒前
hustscholar完成签到,获得积分10
3秒前
无花果应助个性雁芙采纳,获得10
3秒前
怡然猎豹完成签到,获得积分10
4秒前
传奇3应助神秘面筋男采纳,获得20
4秒前
烂漫的蜡烛完成签到 ,获得积分10
4秒前
sxy0604完成签到,获得积分10
4秒前
lpx43完成签到,获得积分10
5秒前
cccxxx完成签到,获得积分10
6秒前
666完成签到,获得积分10
7秒前
orixero应助端庄代荷采纳,获得10
7秒前
天天快乐应助谢雨馨采纳,获得10
7秒前
丁一完成签到 ,获得积分0
9秒前
ldy完成签到,获得积分10
9秒前
尊敬的小土豆完成签到,获得积分10
9秒前
Amosummer完成签到,获得积分10
9秒前
小揭完成签到,获得积分10
10秒前
TCB完成签到,获得积分10
10秒前
树袋熊完成签到,获得积分10
11秒前
11秒前
RayLam完成签到,获得积分10
12秒前
12秒前
遇见完成签到 ,获得积分10
13秒前
是亲爱的小王完成签到,获得积分10
14秒前
牧紫菱完成签到,获得积分10
15秒前
Ha完成签到,获得积分10
15秒前
GJ完成签到,获得积分10
15秒前
15秒前
水木年华完成签到,获得积分10
15秒前
峰回路转完成签到,获得积分10
16秒前
16秒前
Zzz完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890