3DSGIMD: An accurate and interpretable molecular property prediction method using 3D spatial graph focusing network and structure-based feature fusion

计算机科学 财产(哲学) 特征(语言学) 人工智能 图形 模式识别(心理学) 融合 算法 数据挖掘 机器学习 理论计算机科学 语言学 认识论 哲学
作者
Yanan Tian,Chenbin Wang,Ruiqiang Lu,Henry H.Y. Tong,Xiaoqing Gong,Jiayue Qiu,Shaoliang Peng,Xiaojun Yao,Huanxiang Liu
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:161: 189-200 被引量:1
标识
DOI:10.1016/j.future.2024.07.004
摘要

A comprehensive representation of molecular structure is essential for establishing accurate and reliable molecular property prediction models. However, fully extracting and learning intrinsic molecular structure information, especially spatial structure features, remains a challenging task, leading that many molecular property prediction models still have no enough accuracy for the real application. In this study, we developed an innovative and interpretable deep learning method, termed 3DSGIMD, which predicted the molecular properties by integrating and learning the spatial structure and substructure information of molecules at multiple levels, and generated the focusing weights by aggregating spatial and adjacency information of molecules to improve understanding of prediction results. We evaluated the model on 10 public datasets and 14 cell-based phenotypic screening datasets. Extensive experimental results indicated that 3DSGIMD achieved superior or comparable predictive performance compared with some existing models, and the individually designed components contributed significantly to the advanced performance of the model. In addition, we also provided insight into the interpretability of our model via visualizing the focusing weights and perturbation analysis, and the results showed that 3DSGIMD can pinpoint crucial local structures and bits of molecular descriptors associated with the predicted properties. In summary, 3DSGIMD is a competitive molecular property prediction method that holds the potential to aid drug design and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是好人完成签到,获得积分10
1秒前
1秒前
陶醉太阳完成签到,获得积分10
2秒前
热心市民小红花应助朱洪采纳,获得10
2秒前
呆鸥完成签到,获得积分10
2秒前
3秒前
bkagyin应助123采纳,获得10
3秒前
魅猫使者发布了新的文献求助10
6秒前
昭谏完成签到,获得积分10
6秒前
9秒前
卡酷发布了新的文献求助10
9秒前
小鱼完成签到,获得积分10
11秒前
桐桐应助羊可采纳,获得10
12秒前
含糊的紫菜完成签到 ,获得积分10
14秒前
14秒前
wooooo完成签到,获得积分10
14秒前
小阳发布了新的文献求助10
16秒前
16秒前
苹果摇伽完成签到,获得积分10
16秒前
17秒前
张怀民完成签到,获得积分10
20秒前
21秒前
hr完成签到,获得积分10
22秒前
个性的汲发布了新的文献求助10
22秒前
典雅的丹寒完成签到,获得积分10
22秒前
热心市民小红花应助朱洪采纳,获得10
22秒前
羊可完成签到 ,获得积分10
22秒前
23秒前
24秒前
超帅连虎发布了新的文献求助30
24秒前
魅猫使者完成签到,获得积分10
26秒前
28秒前
hr发布了新的文献求助10
28秒前
烟花应助个性的汲采纳,获得10
30秒前
lzz发布了新的文献求助10
30秒前
青天白日完成签到,获得积分10
31秒前
yeayeayea完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
秦摆烂发布了新的文献求助10
32秒前
知还发布了新的文献求助10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150