3DSGIMD: An accurate and interpretable molecular property prediction method using 3D spatial graph focusing network and structure-based feature fusion

计算机科学 财产(哲学) 特征(语言学) 人工智能 图形 模式识别(心理学) 融合 算法 数据挖掘 机器学习 理论计算机科学 哲学 语言学 认识论
作者
Yanan Tian,Chenbin Wang,Ruiqiang Lu,Henry H.Y. Tong,Xiaoqing Gong,Jiayue Qiu,Shaoliang Peng,Xiaojun Yao,Huanxiang Liu
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:161: 189-200
标识
DOI:10.1016/j.future.2024.07.004
摘要

A comprehensive representation of molecular structure is essential for establishing accurate and reliable molecular property prediction models. However, fully extracting and learning intrinsic molecular structure information, especially spatial structure features, remains a challenging task, leading that many molecular property prediction models still have no enough accuracy for the real application. In this study, we developed an innovative and interpretable deep learning method, termed 3DSGIMD, which predicted the molecular properties by integrating and learning the spatial structure and substructure information of molecules at multiple levels, and generated the focusing weights by aggregating spatial and adjacency information of molecules to improve understanding of prediction results. We evaluated the model on 10 public datasets and 14 cell-based phenotypic screening datasets. Extensive experimental results indicated that 3DSGIMD achieved superior or comparable predictive performance compared with some existing models, and the individually designed components contributed significantly to the advanced performance of the model. In addition, we also provided insight into the interpretability of our model via visualizing the focusing weights and perturbation analysis, and the results showed that 3DSGIMD can pinpoint crucial local structures and bits of molecular descriptors associated with the predicted properties. In summary, 3DSGIMD is a competitive molecular property prediction method that holds the potential to aid drug design and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房房不慌完成签到 ,获得积分10
1秒前
4秒前
传统的大白完成签到,获得积分10
5秒前
盼盼完成签到,获得积分10
6秒前
JJ完成签到 ,获得积分10
6秒前
小明完成签到,获得积分10
6秒前
称心芷巧完成签到,获得积分10
7秒前
cf2v应助Jemezs采纳,获得10
8秒前
科目三应助静夜谧思采纳,获得10
10秒前
11秒前
轩辕白竹完成签到,获得积分10
12秒前
12秒前
娟儿完成签到 ,获得积分10
12秒前
珍珠火龙果完成签到 ,获得积分10
12秒前
CMD完成签到 ,获得积分10
14秒前
桐桐应助zzz采纳,获得10
15秒前
天天完成签到 ,获得积分10
16秒前
于于于发布了新的文献求助10
16秒前
务实时光发布了新的文献求助10
18秒前
太阳完成签到,获得积分10
20秒前
威威完成签到,获得积分10
21秒前
21秒前
Shandongdaxiu完成签到 ,获得积分10
21秒前
fan051500完成签到,获得积分10
21秒前
每天都在做梦完成签到 ,获得积分10
22秒前
chenzao完成签到 ,获得积分10
26秒前
26秒前
zzz发布了新的文献求助10
26秒前
Research完成签到 ,获得积分10
27秒前
大方的火龙果完成签到 ,获得积分10
29秒前
tyh完成签到,获得积分10
29秒前
XU博士关注了科研通微信公众号
29秒前
30秒前
31秒前
大饼子圆完成签到 ,获得积分10
32秒前
zzz完成签到,获得积分10
33秒前
Jason完成签到,获得积分10
33秒前
淡然冬灵完成签到,获得积分10
34秒前
凡事发生必有利于我完成签到,获得积分10
35秒前
EJNam完成签到 ,获得积分10
35秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709241
求助须知:如何正确求助?哪些是违规求助? 3257371
关于积分的说明 9904478
捐赠科研通 2970255
什么是DOI,文献DOI怎么找? 1629140
邀请新用户注册赠送积分活动 772448
科研通“疑难数据库(出版商)”最低求助积分说明 743806