3DSGIMD: An accurate and interpretable molecular property prediction method using 3D spatial graph focusing network and structure-based feature fusion

计算机科学 财产(哲学) 特征(语言学) 人工智能 图形 模式识别(心理学) 融合 算法 数据挖掘 机器学习 理论计算机科学 哲学 语言学 认识论
作者
NULL AUTHOR_ID,Chenbin Wang,Ruiqiang Lu,Henry H.Y. Tong,NULL AUTHOR_ID,Jiayue Qiu,Shaoliang Peng,Xiaojun Yao,Huanxiang Liu
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:161: 189-200
标识
DOI:10.1016/j.future.2024.07.004
摘要

A comprehensive representation of molecular structure is essential for establishing accurate and reliable molecular property prediction models. However, fully extracting and learning intrinsic molecular structure information, especially spatial structure features, remains a challenging task, leading that many molecular property prediction models still have no enough accuracy for the real application. In this study, we developed an innovative and interpretable deep learning method, termed 3DSGIMD, which predicted the molecular properties by integrating and learning the spatial structure and substructure information of molecules at multiple levels, and generated the focusing weights by aggregating spatial and adjacency information of molecules to improve understanding of prediction results. We evaluated the model on 10 public datasets and 14 cell-based phenotypic screening datasets. Extensive experimental results indicated that 3DSGIMD achieved superior or comparable predictive performance compared with some existing models, and the individually designed components contributed significantly to the advanced performance of the model. In addition, we also provided insight into the interpretability of our model via visualizing the focusing weights and perturbation analysis, and the results showed that 3DSGIMD can pinpoint crucial local structures and bits of molecular descriptors associated with the predicted properties. In summary, 3DSGIMD is a competitive molecular property prediction method that holds the potential to aid drug design and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
3秒前
精明凌旋发布了新的文献求助10
3秒前
别骂小喷菇完成签到,获得积分10
3秒前
CCC应助sci来采纳,获得30
3秒前
pp-doctor发布了新的文献求助10
5秒前
汉库克完成签到,获得积分10
6秒前
三叔发布了新的文献求助10
7秒前
7秒前
likw23发布了新的文献求助10
9秒前
tz完成签到,获得积分10
9秒前
田様应助梦里格斗家采纳,获得10
10秒前
nextlevel完成签到,获得积分10
10秒前
11秒前
12秒前
pp-doctor完成签到,获得积分20
12秒前
duizhang发布了新的文献求助10
13秒前
TOF发布了新的文献求助10
13秒前
harmony完成签到 ,获得积分10
15秒前
15秒前
Singularity发布了新的文献求助10
16秒前
16秒前
17秒前
称心的冥幽完成签到,获得积分10
20秒前
sush1hang发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
单薄归尘完成签到 ,获得积分10
23秒前
lfl发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
慕青应助Echodeng采纳,获得10
28秒前
拓扑超导相变完成签到,获得积分10
29秒前
30秒前
30秒前
没有银发布了新的文献求助30
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376