Self-growing bionic leaf-vein fins for high-power-density and high-efficiency latent heat thermal energy storage

热的 材料科学 可用能 火用 潜热 功率密度 热能储存 强化传热 拓扑(电路) 储能 功率(物理) 机械工程 传热 机械 热力学 工程类 电气工程 复合材料 物理 传热系数
作者
Yang Tian,Mingxi Ji,Xinliang Qin,Chun Yang,Xianglei Liu
出处
期刊:Energy [Elsevier]
卷期号:309: 133086-133086
标识
DOI:10.1016/j.energy.2024.133086
摘要

Latent heat storage (LHS) has found extensive applications across various fields. However, large-scale deployment is still restricted due to the worse thermal charging performance of traditional LHS systems. In this research, the self-growing fins of the tube-shell LHS system are designed via the bionic topology optimized method to improve thermal storage performances, inspired by the structures and functions of leaf veins. Notably, the system installed with topology-optimized self-growing fins (T-FIN) demonstrates the shortest melting time, largest specific power density (SPD), and highest efficiency simultaneously. At the inlet conditions of 0.5 L·min-1 and 358.15 K, the thermal charging time decreases by 46.4% and 57.1% compared with the systems equipped with traditional long-fins (L-FIN) and short-fins (S-FIN), while increasing the SPD by 80.6% and 125.7%, respectively. Moreover, the efficiency of exergy and entransy storage is 2.49 and 2.42 times, respectively, as large as those of the S-FIN. The intrinsic mechanism is attributed to enhanced synergy between the liquid-PCM temperature field and the flow field. Furthermore, outer tube shapes are optimized by the Genetic Algorithm for the first time, leading to a further decrease in charging time by 21.57% compared with its original counterpart. These findings provide a valuable idea for designing efficient bionic LHS systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡图图完成签到,获得积分10
3秒前
咩咩咩发布了新的文献求助10
3秒前
汉堡包应助大力沛萍采纳,获得10
4秒前
今后应助Zz采纳,获得10
4秒前
5秒前
6秒前
6秒前
研友_nxw2xL发布了新的文献求助10
6秒前
lc发布了新的文献求助10
8秒前
9秒前
小刘一定能读C9博完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
平常的G完成签到,获得积分10
10秒前
10秒前
西西发布了新的文献求助10
11秒前
飞学book完成签到,获得积分10
12秒前
12秒前
slowslow完成签到,获得积分10
13秒前
13秒前
loski发布了新的文献求助10
13秒前
优秀笑寒完成签到,获得积分10
13秒前
神明发布了新的文献求助10
14秒前
王秋婷发布了新的文献求助10
14秒前
大力沛萍发布了新的文献求助10
15秒前
Mstone发布了新的文献求助10
15秒前
VICKY完成签到 ,获得积分10
16秒前
16秒前
子车半烟发布了新的文献求助10
17秒前
科研通AI2S应助咩咩咩采纳,获得10
17秒前
NexusExplorer应助咩咩咩采纳,获得10
17秒前
17秒前
慕青应助彩色草莓采纳,获得30
19秒前
JamesPei应助神明采纳,获得10
20秒前
YY本Y完成签到 ,获得积分10
20秒前
充电宝应助lilith采纳,获得10
20秒前
可爱的函函应助XLT采纳,获得10
21秒前
刘璇1发布了新的文献求助10
22秒前
劲秉应助殷勤的紫槐采纳,获得100
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605