生物
仙台病毒
病毒学
衣壳
免疫系统
病毒
诺如病毒
免疫
减毒疫苗
抗体
载体(分子生物学)
中和抗体
病毒复制
异源的
病毒载体
免疫学
基因
遗传学
重组DNA
毒力
作者
Yazdan Samieipour,Marian Wiegand,Elena M. Willner,Dieter Hoffmann,Kamyar Shameli,Ulrike Protzer,Hassan Moeini
标识
DOI:10.1016/j.micinf.2024.105412
摘要
Human norovirus (HuNoV) is a major global cause of acute gastroenteritis, with vaccine development facing several challenges. Despite years of research, there are currently no licensed vaccines available for controlling HuNoVs. Here, we describe the construction and testing of a replication-deficient Sendai virus (SeV) vector as a potential vaccine candidate against the HuNoV GII.4 genotype. SeV was chosen as the vaccine backbone due to its non-pathogenic nature in humans, its capability for long-term antigen expression in mammalian cells, and its suitability for mucosal administration. By inserting the HuNoV GII.4 capsid gene, VP1, into the SeV genome, we generated a replication-deficient SeV (SeV/dP.VP1) vector. The resultant SeV/dP.VP1 virus were observed to successfully express the inserted NoV VP1 gene upon infection. Inoculating the vaccine into wild-type mice elicited NoV-specific IgG antibodies, along with INF-γ and IL-2-producing T cells, through both intranasal (i.n.) and intramuscular (i.m.) immunization. Furthermore, a significant level of NoV-specific IgA was detected in lung homogenates after i.n. immunization, particularly using a high dose of the viral vector. Additionally, a synergistic effect was observed with heterologous prime-boost regimens using SeV/dP.VP1 and MVA.VP1 vectors, indicating the potential for more robust immune responses when the vaccine design is optimized. Our study demonstrates the potential of a SeV vaccine candidate in eliciting a broad immune response and lays the foundation for further exploration of the SeV vector platform's potential as a HuNoV vaccine. Additionally, the results emphasize the importance of vaccine dosage and administration route, highlighting the need for tailored immunization strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI