磷光
材料科学
刚度(电磁)
水溶液
结构刚度
纳米技术
化学物理
光电子学
复合材料
荧光
光学
物理化学
几何学
数学
物理
化学
作者
Li Liang,Ya Gao,Shuai Chang,Jian Lv,Lu Wang,Meng Li Liu,Da Jun Wu,Ming Jie Ye,Binbin Chen,Da‐Wei Li
标识
DOI:10.1002/adom.202401642
摘要
Abstract Designing ultralong‐lived aqueous room temperature phosphorescence (RTP) materials has become an actively pursued but challenging research area. Herein, a coordination‐induced structural rigidity (CISR) strategy is proposed to achieve ultralong RTP lifetime in magnesium/pyromellitic acid phosphorescent materials (Mg/PMA‐PMs) with abundant Mg 2+ ions sites and hydrophilic groups in aqueous solution. Compared to their dry state (448.77 ms), the lifetime of Mg/PMA‐PMs significantly increases to 1026.17 ms with the addition of a small amount of water (50 wt%). Even in a fully non‐deoxygenated aqueous environment (above 200 wt% water), where Mg/PMA‐PMs disintegrate to form a nanosuspension, they still exhibit an ultralong aqueous RTP lifetime of ≈800 ms. The water‐enhanced RTP properties are attributed to water molecules coordinating with Mg 2+ ions and acting as bridging agents to bind with hydrophilic groups through hydrogen bonding. This interaction rigidifies functional groups and inhibits their motions, leading to a substantial reduction in nonradiative decay. Furthermore, the CISR mechanism effectively explains the RTP enhancement effect of water on inorganic salt phosphorescent systems. This work not only provides a new approach for constructing efficient aqueous RTP materials, but also develops a powerful tool for visual anion recognition.
科研通智能强力驱动
Strongly Powered by AbleSci AI