A Medical Image Segmentation Method Based on Improved UNet 3+ Network

分割 计算机科学 人工智能 特征(语言学) 卷积神经网络 模式识别(心理学) 冗余(工程) 图像分割 特征提取 块(置换群论) 数学 几何学 语言学 操作系统 哲学
作者
Yang Xu,Shike Hou,Xiangyu Wang,Duo Li,Lu Lu
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (3): 576-576 被引量:14
标识
DOI:10.3390/diagnostics13030576
摘要

In recent years, segmentation details and computing efficiency have become more important in medical image segmentation for clinical applications. In deep learning, UNet based on a convolutional neural network is one of the most commonly used models. UNet 3+ was designed as a modified UNet by adopting the architecture of full-scale skip connections. However, full-scale feature fusion can result in excessively redundant computations. This study aimed to reduce the network parameters of UNet 3+ while further improving the feature extraction capability. First, to eliminate redundancy and improve computational efficiency, we prune the full-scale skip connections of UNet 3+. In addition, we use the attention module called Convolutional Block Attention Module (CBAM) to capture more essential features and thus improve the feature expression capabilities. The performance of the proposed model was validated by three different types of datasets: skin cancer segmentation, breast cancer segmentation, and lung segmentation. The parameters are reduced by about 36% and 18% compared to UNet and UNet 3+, respectively. The results show that the proposed method not only outperformed the comparison models in a variety of evaluation metrics but also achieved more accurate segmentation results. The proposed models have lower network parameters that enhance feature extraction and improve segmentation performance efficiently. Furthermore, the models have great potential for application in medical imaging computer-aided diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助罗某人采纳,获得10
刚刚
李爱国应助无情的宛儿采纳,获得10
刚刚
黄黄完成签到,获得积分10
1秒前
FFFFF发布了新的文献求助10
2秒前
moonlighter完成签到,获得积分10
2秒前
2秒前
shapvalue发布了新的文献求助30
3秒前
4秒前
桐桐应助可爱的雪卉采纳,获得10
5秒前
王不羁发布了新的文献求助10
7秒前
8秒前
8秒前
在水一方应助温暖的碧彤采纳,获得10
9秒前
9秒前
9秒前
科研狗完成签到,获得积分10
9秒前
小书包完成签到,获得积分10
10秒前
11秒前
12秒前
rossi完成签到,获得积分10
13秒前
罗某人发布了新的文献求助10
14秒前
庾新竹发布了新的文献求助10
14秒前
xxxL发布了新的文献求助10
15秒前
诚心闭月发布了新的文献求助10
16秒前
16秒前
风枞完成签到 ,获得积分10
17秒前
17秒前
17秒前
吴DrYDYY完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
小绵羊发布了新的文献求助10
18秒前
19秒前
嘎嘣脆完成签到,获得积分10
20秒前
su发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
小橙完成签到 ,获得积分10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959547
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126213
捐赠科研通 3237706
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871647
科研通“疑难数据库(出版商)”最低求助积分说明 802931