An efficient entropy based dissimilarity measure to cluster categorical data

聚类分析 计算机科学 范畴变量 数据挖掘 兰德指数 熵(时间箭头) 数据点 模式识别(心理学) k-中位数聚类 单连锁聚类 相似性度量 公制(单位) 高维数据聚类 人工智能 数据集 水准点(测量) 相关聚类 CURE数据聚类算法 机器学习 量子力学 物理 运营管理 经济 地理 大地测量学
作者
Amit Kumar Kar,Amaresh Chandra Mishra,Sraban Kumar Mohanty
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:119: 105795-105795 被引量:13
标识
DOI:10.1016/j.engappai.2022.105795
摘要

Clustering is an unsupervised learning technique that discovers intrinsic groups based on proximity between data points. Therefore, the performance of clustering techniques mainly relies on the proximity measures used to compute the (dis)similarity between the data objects. In general, it is relatively easier to compute the distance between numerical data points as numerical operations can directly be applied to values along features. However, for categorical datasets, computing the (dis)similarity between the data objects becomes a non-trivial problem. Therefore, in this paper, we propose a new distance metric based on the information theoretic approach to compute the dissimilarity between categorical data points. We compute entropy along each feature to capture the intra-attribute statistical information, based on which significance of attributes are decided during clustering. The proposed measure is free from any domain-dependent parameters and also does not rely on the distribution of data points. Experiment is conducted over diversified benchmark data sets, considering six competing proximity measures with three popular clustering algorithms and the clustering results are compared in terms of RI (Rand Index), ARI (Adjusted Rand Index), CA (Clustering Accuracy) and Cluster Discrimination Matrix (CDM). Over 85 percent of the data sets, the clustering accuracy of the proposed metric embedded with K-Mode and Weighted K-Mode outperforms its counterparts. Approximately, 0.2951 s is needed by the proposed metric to cluster a data set having 10,000 data points with 8 attributes and 2 clusters on a standard desktop machine. Overall, experimental results demonstrate the efficacy of the proposed metric to handle complex real datasets of different characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
没写名字233完成签到 ,获得积分10
3秒前
zzz33发布了新的文献求助10
4秒前
情怀应助zhy采纳,获得10
4秒前
吉他上的蘑菇完成签到,获得积分10
5秒前
cckyt完成签到,获得积分10
6秒前
Jasper应助嘻嘻lxs采纳,获得30
6秒前
耶耶耶酥完成签到,获得积分10
6秒前
Godlove发布了新的文献求助10
7秒前
7秒前
安静曼彤发布了新的文献求助10
8秒前
科研通AI2S应助可可采纳,获得10
8秒前
ilk666完成签到,获得积分10
11秒前
张利双发布了新的文献求助10
11秒前
清新的谷南完成签到,获得积分10
11秒前
11秒前
Godlove完成签到,获得积分10
11秒前
科研通AI2S应助超帅的大白采纳,获得10
12秒前
福崽发布了新的文献求助10
13秒前
14秒前
包凡之发布了新的文献求助10
15秒前
青晨发布了新的文献求助10
16秒前
闪闪的翠绿完成签到,获得积分10
16秒前
哈哈哈完成签到,获得积分20
17秒前
17秒前
18秒前
泡棉胶发布了新的文献求助10
18秒前
童年的秋千完成签到,获得积分10
19秒前
sun完成签到,获得积分20
19秒前
牢大完成签到 ,获得积分10
20秒前
20秒前
xxx关闭了xxx文献求助
21秒前
22秒前
顺顺顺顺发布了新的文献求助10
22秒前
田様应助王雯雯采纳,获得10
22秒前
22秒前
FOB关闭了FOB文献求助
23秒前
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962822
求助须知:如何正确求助?哪些是违规求助? 3508736
关于积分的说明 11142697
捐赠科研通 3241520
什么是DOI,文献DOI怎么找? 1791604
邀请新用户注册赠送积分活动 872987
科研通“疑难数据库(出版商)”最低求助积分说明 803517