DAGM-fusion: A dual-path CT-MRI image fusion model based multi-axial gated MLP

计算机科学 图像融合 人工智能 块(置换群论) 像素 路径(计算) 特征(语言学) 整体性 模式识别(心理学) 医学影像学 计算机视觉 图像(数学) 数学 全球化 经济 市场经济 语言学 哲学 程序设计语言 几何学
作者
Chao Fan,Hao Lin,Yingying Qiu,Litao Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106620-106620 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.106620
摘要

Medical imaging technology provides a good understanding of human tissue structure. MRI provides high-resolution soft tissue information, and CT provides high-quality bone density information. By creating CT-MRI fusion images of complex diagnostic situations, experts can develop diagnoses and treatment plans more quickly and precisely. We propose a dual-path CT-MRI image fusion model based on multi-axial gated MLP to create high-quality CT-MRI fusion images. The model employs the feature fusion module SFT-block to effectively integrate detailed Local-Path information guided by global Global-Path information. The fusion is completed through triple constraints, namely global constraints, local constraints, and overall constraints. We design a multi-axial gated MLP module (Ag-MLP). The multi-axial structure maintains the computational complexity linear and increases MLP's inductive bias, allowing MLP to work in shallower or pixel-level small dataset tasks. Ag-MLP and CNN are combined in the network so that the model has both globality and locality. In addition, we design a loss calculation method based on image patches that adaptively generates weights for each patch based on image pixel intensity. The details of the image are efficiently increased when patch-loss is used. Numerous studies demonstrate that the results of our model are superior to those of the latest mainstream fusion model, which are more in accordance with actual clinical diagnostic standards. The ablation studies successfully validate the performance of the model's constituent parts. It is worth mentioning that the model can also be excellently generalized to other modal image fusion tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tal发布了新的文献求助10
刚刚
kk关闭了kk文献求助
刚刚
Orange应助For采纳,获得10
1秒前
研友_pLw3vL完成签到,获得积分10
1秒前
俊秀的千万完成签到,获得积分10
1秒前
无敌幸运星应助SC采纳,获得100
1秒前
1秒前
1秒前
脑洞疼应助infboy采纳,获得10
1秒前
重要聪展发布了新的文献求助10
1秒前
Jessie完成签到,获得积分10
1秒前
1秒前
Dongsy完成签到,获得积分10
2秒前
万能图书馆应助坦率乌采纳,获得10
2秒前
2秒前
lwk发布了新的文献求助10
2秒前
我是老大应助dave采纳,获得30
2秒前
456487s完成签到,获得积分10
3秒前
潇湘雪月完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
百事可乐完成签到,获得积分10
3秒前
chi2完成签到,获得积分10
3秒前
Feng完成签到,获得积分10
3秒前
zyj完成签到,获得积分10
3秒前
沉静的煎蛋完成签到 ,获得积分10
3秒前
4秒前
MB1234567完成签到,获得积分10
4秒前
eric曾完成签到,获得积分10
4秒前
洪桂淋完成签到,获得积分10
5秒前
紧张的毛衣完成签到,获得积分10
5秒前
12发布了新的文献求助10
5秒前
只有个石头完成签到,获得积分10
5秒前
Ava应助西瓜采纳,获得10
5秒前
5秒前
5秒前
5秒前
lyy完成签到 ,获得积分10
6秒前
cfplrbs完成签到,获得积分20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427734
求助须知:如何正确求助?哪些是违规求助? 4541470
关于积分的说明 14177378
捐赠科研通 4459139
什么是DOI,文献DOI怎么找? 2445250
邀请新用户注册赠送积分活动 1436438
关于科研通互助平台的介绍 1413797