DAGM-fusion: A dual-path CT-MRI image fusion model based multi-axial gated MLP

计算机科学 图像融合 人工智能 块(置换群论) 像素 路径(计算) 特征(语言学) 整体性 模式识别(心理学) 医学影像学 计算机视觉 图像(数学) 数学 全球化 经济 市场经济 语言学 哲学 程序设计语言 几何学
作者
Chao Fan,Hao Lin,Yingying Qiu,Litao Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106620-106620 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.106620
摘要

Medical imaging technology provides a good understanding of human tissue structure. MRI provides high-resolution soft tissue information, and CT provides high-quality bone density information. By creating CT-MRI fusion images of complex diagnostic situations, experts can develop diagnoses and treatment plans more quickly and precisely. We propose a dual-path CT-MRI image fusion model based on multi-axial gated MLP to create high-quality CT-MRI fusion images. The model employs the feature fusion module SFT-block to effectively integrate detailed Local-Path information guided by global Global-Path information. The fusion is completed through triple constraints, namely global constraints, local constraints, and overall constraints. We design a multi-axial gated MLP module (Ag-MLP). The multi-axial structure maintains the computational complexity linear and increases MLP's inductive bias, allowing MLP to work in shallower or pixel-level small dataset tasks. Ag-MLP and CNN are combined in the network so that the model has both globality and locality. In addition, we design a loss calculation method based on image patches that adaptively generates weights for each patch based on image pixel intensity. The details of the image are efficiently increased when patch-loss is used. Numerous studies demonstrate that the results of our model are superior to those of the latest mainstream fusion model, which are more in accordance with actual clinical diagnostic standards. The ablation studies successfully validate the performance of the model's constituent parts. It is worth mentioning that the model can also be excellently generalized to other modal image fusion tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠木发布了新的文献求助10
1秒前
yee完成签到,获得积分20
1秒前
传奇3应助吱唔朱采纳,获得10
1秒前
英俊的铭应助yuchuncheng采纳,获得10
2秒前
酷波er应助忧郁凌波采纳,获得30
2秒前
坚强丹雪发布了新的文献求助10
2秒前
浮游应助不喜采纳,获得10
2秒前
赫幼蓉完成签到 ,获得积分10
4秒前
zhzhy完成签到,获得积分10
5秒前
handada完成签到,获得积分10
6秒前
啦啦啦发布了新的文献求助10
6秒前
8秒前
天真映菡发布了新的文献求助30
8秒前
FashionBoy应助调皮的巧凡采纳,获得10
8秒前
顾矜应助鲜艳的初蓝采纳,获得10
9秒前
9秒前
10秒前
yuchuncheng完成签到,获得积分10
11秒前
12秒前
tanhaowen发布了新的文献求助10
12秒前
积极问晴完成签到,获得积分10
13秒前
yuchuncheng发布了新的文献求助10
14秒前
魔幻凡儿发布了新的文献求助10
14秒前
威武的灵槐完成签到,获得积分10
14秒前
无极微光应助Kototo采纳,获得20
15秒前
陈星锦发布了新的文献求助10
15秒前
16秒前
科研通AI6应助3089ggf采纳,获得10
16秒前
思源应助胡一一采纳,获得10
16秒前
郭果果发布了新的文献求助10
17秒前
落清欢发布了新的文献求助10
17秒前
浮游应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
mashibeo应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
整齐麦片应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458366
求助须知:如何正确求助?哪些是违规求助? 4564435
关于积分的说明 14295002
捐赠科研通 4489318
什么是DOI,文献DOI怎么找? 2458991
邀请新用户注册赠送积分活动 1448827
关于科研通互助平台的介绍 1424446