DAGM-fusion: A dual-path CT-MRI image fusion model based multi-axial gated MLP

计算机科学 图像融合 人工智能 块(置换群论) 像素 路径(计算) 特征(语言学) 整体性 模式识别(心理学) 医学影像学 计算机视觉 图像(数学) 数学 全球化 经济 市场经济 语言学 哲学 程序设计语言 几何学
作者
Chao Fan,Hao Lin,Yingying Qiu,Litao Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106620-106620 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.106620
摘要

Medical imaging technology provides a good understanding of human tissue structure. MRI provides high-resolution soft tissue information, and CT provides high-quality bone density information. By creating CT-MRI fusion images of complex diagnostic situations, experts can develop diagnoses and treatment plans more quickly and precisely. We propose a dual-path CT-MRI image fusion model based on multi-axial gated MLP to create high-quality CT-MRI fusion images. The model employs the feature fusion module SFT-block to effectively integrate detailed Local-Path information guided by global Global-Path information. The fusion is completed through triple constraints, namely global constraints, local constraints, and overall constraints. We design a multi-axial gated MLP module (Ag-MLP). The multi-axial structure maintains the computational complexity linear and increases MLP's inductive bias, allowing MLP to work in shallower or pixel-level small dataset tasks. Ag-MLP and CNN are combined in the network so that the model has both globality and locality. In addition, we design a loss calculation method based on image patches that adaptively generates weights for each patch based on image pixel intensity. The details of the image are efficiently increased when patch-loss is used. Numerous studies demonstrate that the results of our model are superior to those of the latest mainstream fusion model, which are more in accordance with actual clinical diagnostic standards. The ablation studies successfully validate the performance of the model's constituent parts. It is worth mentioning that the model can also be excellently generalized to other modal image fusion tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luo完成签到,获得积分10
刚刚
莫咏怡发布了新的文献求助10
1秒前
乐乐应助Corn_Dog采纳,获得10
1秒前
鱼鱼鱼发布了新的文献求助10
1秒前
隐形曼青应助网上飞采纳,获得10
1秒前
1秒前
科研通AI6应助kjwu采纳,获得10
1秒前
GLZ6984发布了新的文献求助10
2秒前
sda发布了新的文献求助10
3秒前
laryc完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
Ksharp10完成签到,获得积分10
4秒前
大野发布了新的文献求助10
5秒前
5秒前
5秒前
sda完成签到,获得积分10
5秒前
明理如凡完成签到,获得积分10
6秒前
科研通AI6应助Double采纳,获得10
7秒前
pokexuejiao完成签到,获得积分10
7秒前
李雅欣发布了新的文献求助10
7秒前
完美世界应助分隔符采纳,获得10
7秒前
Fernweh完成签到,获得积分20
8秒前
shouying发布了新的文献求助10
8秒前
夜染完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
huangxiaomei111完成签到,获得积分10
9秒前
9秒前
小落完成签到,获得积分10
10秒前
我是弱智先帮我完成签到,获得积分10
10秒前
李爱国应助叶祥采纳,获得10
10秒前
gyh完成签到,获得积分20
10秒前
王澄橙发布了新的文献求助50
10秒前
邓娅琴发布了新的文献求助10
11秒前
12秒前
彭于晏应助ftyun采纳,获得10
13秒前
Moro完成签到,获得积分10
13秒前
15秒前
大野完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728