DAGM-fusion: A dual-path CT-MRI image fusion model based multi-axial gated MLP

计算机科学 图像融合 人工智能 块(置换群论) 像素 路径(计算) 特征(语言学) 整体性 模式识别(心理学) 医学影像学 计算机视觉 图像(数学) 数学 哲学 程序设计语言 经济 全球化 语言学 市场经济 几何学
作者
Chao Fan,Hao Lin,Yingying Qiu,Litao Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106620-106620 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.106620
摘要

Medical imaging technology provides a good understanding of human tissue structure. MRI provides high-resolution soft tissue information, and CT provides high-quality bone density information. By creating CT-MRI fusion images of complex diagnostic situations, experts can develop diagnoses and treatment plans more quickly and precisely. We propose a dual-path CT-MRI image fusion model based on multi-axial gated MLP to create high-quality CT-MRI fusion images. The model employs the feature fusion module SFT-block to effectively integrate detailed Local-Path information guided by global Global-Path information. The fusion is completed through triple constraints, namely global constraints, local constraints, and overall constraints. We design a multi-axial gated MLP module (Ag-MLP). The multi-axial structure maintains the computational complexity linear and increases MLP's inductive bias, allowing MLP to work in shallower or pixel-level small dataset tasks. Ag-MLP and CNN are combined in the network so that the model has both globality and locality. In addition, we design a loss calculation method based on image patches that adaptively generates weights for each patch based on image pixel intensity. The details of the image are efficiently increased when patch-loss is used. Numerous studies demonstrate that the results of our model are superior to those of the latest mainstream fusion model, which are more in accordance with actual clinical diagnostic standards. The ablation studies successfully validate the performance of the model's constituent parts. It is worth mentioning that the model can also be excellently generalized to other modal image fusion tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jana应助可爱航采纳,获得10
1秒前
wang完成签到 ,获得积分10
2秒前
2秒前
4秒前
6秒前
刘晓倩发布了新的文献求助10
7秒前
风筝有风发布了新的文献求助10
8秒前
yuaner发布了新的文献求助10
11秒前
研友_VZG7GZ应助文武兼备采纳,获得10
11秒前
风筝有风完成签到,获得积分10
13秒前
Cyber_relic完成签到,获得积分10
18秒前
18秒前
18秒前
SciGPT应助整齐凌萱采纳,获得10
20秒前
花卷完成签到 ,获得积分10
21秒前
山花云锦完成签到 ,获得积分10
21秒前
傲娇的小蜜蜂完成签到,获得积分10
22秒前
28秒前
630天天发布了新的文献求助10
29秒前
32秒前
32秒前
32秒前
整齐凌萱发布了新的文献求助10
33秒前
36秒前
Sean发布了新的文献求助10
36秒前
jianning发布了新的文献求助10
38秒前
科研通AI2S应助刘晓倩采纳,获得10
38秒前
39秒前
chuxia991完成签到,获得积分10
40秒前
wjq2430发布了新的文献求助10
41秒前
小蘑菇应助仰望星空采纳,获得10
42秒前
43秒前
隐形曼青应助qz采纳,获得10
43秒前
Sean完成签到,获得积分10
45秒前
莫遥完成签到 ,获得积分10
47秒前
50秒前
彭于晏女友完成签到,获得积分10
52秒前
Owen应助无敌小宽哥采纳,获得10
52秒前
52秒前
53秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139294
求助须知:如何正确求助?哪些是违规求助? 2790157
关于积分的说明 7794200
捐赠科研通 2446581
什么是DOI,文献DOI怎么找? 1301284
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109