Fault detection of automobile suspension system using decision tree algorithms: A machine learning approach

C4.5算法 算法 决策树 随机森林 振动 计算机科学 决策树学习 断层(地质) 分类器(UML) 人工智能 机器学习 支持向量机 朴素贝叶斯分类器 量子力学 物理 地质学 地震学
作者
P. Arun Balaji,V. Sugumaran
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part E: Journal Of Process Mechanical Engineering [SAGE Publishing]
卷期号:238 (3): 1206-1217 被引量:7
标识
DOI:10.1177/09544089231152698
摘要

The study aims to detect multiple faults that are exhibited by suspension system components during prolonged usage. Faults such as strut worn out, strut external damage, strut mount fault, lower arm ball joint fault, lower arm bush worn out and tie rod ball joint fault were considered in this study. A novel approach is proposed in the present study that involves vibration signals and machine learning techniques to identify various suspension system faults. Vibration signals were acquired for different fault conditions (as mentioned above) at three different load conditions by a specially fabricated experimental setup. Statistical features were extracted from the acquired vibration signals from which the most significant features were selected using J48 decision tree algorithm. The selected features were provided as input to the tree-based family of algorithms to determine the best in class classification algorithm for suspension fault diagnosis. The results obtained enumerate that the random forest classifier produces the best classification accuracy for all the load conditions (no load, half load, and full load) with values of 95.88%, 94.88%, and 92.01%, respectively. Finally, the performance of the proposed classification model is compared with other state-of-the-art machine learning classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助liugm采纳,获得10
刚刚
1秒前
小马甲应助背后海亦采纳,获得10
1秒前
cldg发布了新的文献求助10
2秒前
情怀应助直率的花生采纳,获得10
3秒前
陈JY完成签到 ,获得积分10
3秒前
FashionBoy应助跬步一积采纳,获得30
3秒前
xiaohai完成签到,获得积分20
3秒前
YIWENNN发布了新的文献求助10
3秒前
朴实如冰完成签到,获得积分10
5秒前
灿烂sunfly完成签到,获得积分10
6秒前
jjj完成签到,获得积分10
7秒前
9秒前
10秒前
图图应助shengpingyang采纳,获得30
11秒前
11秒前
机灵的煎蛋完成签到,获得积分10
13秒前
bkagyin应助WYF采纳,获得10
13秒前
14秒前
zzzzzz发布了新的文献求助10
15秒前
15秒前
背后海亦发布了新的文献求助10
18秒前
18秒前
18秒前
YilinHou应助花开富贵采纳,获得10
19秒前
伶俐的飞鸟完成签到 ,获得积分10
19秒前
19秒前
知还完成签到,获得积分10
19秒前
呵呵喊我完成签到,获得积分10
21秒前
zyt发布了新的文献求助10
21秒前
23秒前
momo发布了新的文献求助30
24秒前
24秒前
WYF发布了新的文献求助10
24秒前
apt应助Yang采纳,获得10
27秒前
29秒前
酷波er应助背后海亦采纳,获得10
29秒前
哒哒哒哒完成签到,获得积分10
29秒前
柯千风发布了新的文献求助10
29秒前
狗猪仔完成签到,获得积分20
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427