荧光团
化学
自体荧光
二氧乙烷
费斯特共振能量转移
荧光
近红外光谱
化学发光
分子内力
小分子
临床前影像学
体内
分析化学(期刊)
光化学
立体化学
光学
有机化学
色谱法
生物化学
物理
生物技术
生物
作者
Zhongxiang Chen,Lichao Su,Ying Wu,Jianyong Liu,Rongrong Wu,Qian Li,Chenlu Wang,Luntao Liu,Jibin Song
标识
DOI:10.1073/pnas.2205186120
摘要
Chemiluminescence (CL) with the elimination of excitation light and minimal autofluorescence interference has been wieldy applied in biosensing and bioimaging. However, the traditional emission of CL probes was mainly in the range of 400 to 650 nm, leading to undesired resolution and penetration in a biological object. Therefore, it was urgent to develop CL molecules in the near-infrared window [NIR, including NIR-I (650 to 900 nm) and near-infrared-II (900 to 1,700 nm)], coupled with unique advantages of long-time imaging, sensitive response, and high resolution at depths of millimeters. However, no NIR-II CL unimolecular probe has been reported until now. Herein, we developed an H2S-activated NIR-II CL probe [chemiluminiscence donor 950, (CD-950)] by covalently connecting two Schaap's dioxetane donors with high chemical energy to a NIR-II fluorophore acceptor candidate via intramolecular CL resonance energy transfer strategy, thereby achieving high efficiency of 95%. CD-950 exhibited superior capacity including long-duration imaging (~60 min), deeper tissue penetration (~10 mm), and specific H2S response under physiological conditions. More importantly, CD-950 showed detection capability for metformin-induced hepatotoxicity with 2.5-fold higher signal-to-background ratios than that of NIR-II fluorescence mode. The unimolecular NIR-II CL probe holds great potential for the evaluation of drug-induced side effects by tracking its metabolites in vivo, further facilitating the rational design of novel NIR-II CL-based detection platforms.
科研通智能强力驱动
Strongly Powered by AbleSci AI