清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Vegetation growth due to CO2 fertilization is threatened by increasing vapor pressure deficit

蒸汽压差 环境科学 植被(病理学) 大气科学 气候学 干旱 生态学 光合作用 地质学 植物 生物 蒸腾作用 医学 病理
作者
Shijie Li,Guojie Wang,Chenxia Zhu,Jiao Lu,Waheed Ullah,Daniel Fiifi Tawia Hagan,Giri Kattel,Yi Liu,Zhenyu Zhang,Yang Song,Shanlei Sun,Yi Zheng,Jian Peng
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:619: 129292-129292 被引量:24
标识
DOI:10.1016/j.jhydrol.2023.129292
摘要

Numerous studies found that the CO2 fertilization effect can enhance vegetation growth, however, some recent studies showed that the increase of vapor pressure deficit (VPD) could reduce vegetation growth due to an increase in surface resistance. It remains unclear to what extent VPD increases can offset the CO2 fertilization effect. Here, we examined the long-term trends of terrestrial gross primary productivity (GPP) at the global scale using six products derived from satellite observations, machine learning algorithms, and dynamic vegetation model simulations. While we found significant increases (p less than 0.05) in GPP in most of the world, we also found significant decreases in GPP over the Amazon basin, western North America, eastern Europe and central Asia. Our attribution analysis showed that although the elevated CO2 concentration dominated the long-term trends of GPP, VPD also played an important role. The increasing VPD could explain the decreasing GPP over the arid and tropical regions. The negative contribution of VPD to GPP trends appeared to become amplified with time, leading to suppressed global vegetation growth in the last two decades. The amplified contribution of VPD to GPP trends was directly related to the decrease in soil moisture, indicating the soil moisture-induced land–atmosphere coupling (LAC) and the vegetation growth stagnation since the year 2000. Our results provide insight into the negative contribution of VPD to long-term GPP trends, which can partly offset 68.21 % of the CO2 fertilization effect and even stagnate the vegetation growth with time. The possible mechanisms behind the effect of soil moisture-VPD coupling on the vegetation dynamics at the global scale needs further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心的晓霜完成签到,获得积分10
13秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
33秒前
35秒前
40秒前
拼搏问薇完成签到 ,获得积分10
48秒前
49秒前
56秒前
1分钟前
supermaltose完成签到,获得积分10
1分钟前
1分钟前
yyds完成签到,获得积分0
1分钟前
1分钟前
1分钟前
科研狗的春天完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
輕瘋发布了新的文献求助10
1分钟前
輕瘋完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
葛力完成签到,获得积分10
2分钟前
3分钟前
3分钟前
ZTiamT发布了新的文献求助200
3分钟前
3分钟前
3分钟前
3分钟前
ZTiamT发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732460
求助须知:如何正确求助?哪些是违规求助? 5339547
关于积分的说明 15322262
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620838
邀请新用户注册赠送积分活动 1570005
关于科研通互助平台的介绍 1526699