Vegetation growth due to CO2 fertilization is threatened by increasing vapor pressure deficit

蒸汽压差 环境科学 植被(病理学) 大气科学 气候学 干旱 生态学 光合作用 地质学 植物 生物 蒸腾作用 医学 病理
作者
Shijie Li,Guojie Wang,Chenxia Zhu,Jiao Lu,Waheed Ullah,Daniel Fiifi Tawia Hagan,Giri Kattel,Yi Y. Liu,Zhenyu Zhang,Yang Song,Shanlei Sun,Yi Zheng,Jian Peng
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:619: 129292-129292 被引量:10
标识
DOI:10.1016/j.jhydrol.2023.129292
摘要

Numerous studies found that the CO2 fertilization effect can enhance vegetation growth, however, some recent studies showed that the increase of vapor pressure deficit (VPD) could reduce vegetation growth due to an increase in surface resistance. It remains unclear to what extent VPD increases can offset the CO2 fertilization effect. Here, we examined the long-term trends of terrestrial gross primary productivity (GPP) at the global scale using six products derived from satellite observations, machine learning algorithms, and dynamic vegetation model simulations. While we found significant increases (p less than 0.05) in GPP in most of the world, we also found significant decreases in GPP over the Amazon basin, western North America, eastern Europe and central Asia. Our attribution analysis showed that although the elevated CO2 concentration dominated the long-term trends of GPP, VPD also played an important role. The increasing VPD could explain the decreasing GPP over the arid and tropical regions. The negative contribution of VPD to GPP trends appeared to become amplified with time, leading to suppressed global vegetation growth in the last two decades. The amplified contribution of VPD to GPP trends was directly related to the decrease in soil moisture, indicating the soil moisture-induced land–atmosphere coupling (LAC) and the vegetation growth stagnation since the year 2000. Our results provide insight into the negative contribution of VPD to long-term GPP trends, which can partly offset 68.21 % of the CO2 fertilization effect and even stagnate the vegetation growth with time. The possible mechanisms behind the effect of soil moisture-VPD coupling on the vegetation dynamics at the global scale needs further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助谢佳冀采纳,获得10
1秒前
科研通AI2S应助onedowmsk采纳,获得10
2秒前
桐桐应助wxyllxx采纳,获得30
2秒前
张达完成签到 ,获得积分20
3秒前
天天快乐应助光亮秋白采纳,获得10
3秒前
英俊的铭应助Raul采纳,获得30
3秒前
Muran完成签到,获得积分0
3秒前
满满啊完成签到,获得积分10
5秒前
黑森林发布了新的文献求助10
6秒前
上官若男应助默默采纳,获得10
7秒前
8秒前
晨晨CC完成签到,获得积分10
10秒前
mxq完成签到,获得积分10
10秒前
李健应助夕荀采纳,获得10
10秒前
12秒前
12秒前
12秒前
谢佳冀发布了新的文献求助10
13秒前
14秒前
Galato发布了新的文献求助10
15秒前
zzholiver发布了新的文献求助10
16秒前
卫生洁具发布了新的文献求助10
16秒前
Lucas应助wxyllxx采纳,获得10
18秒前
18秒前
lixl0725完成签到,获得积分10
18秒前
几酌应助科研通管家采纳,获得10
18秒前
oceanao应助科研通管家采纳,获得10
18秒前
hogluins完成签到,获得积分10
18秒前
18秒前
几酌应助科研通管家采纳,获得40
18秒前
深情安青应助科研通管家采纳,获得50
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
sissiarno应助科研通管家采纳,获得30
18秒前
19秒前
酷波er应助zhzhzh采纳,获得10
19秒前
Raul发布了新的文献求助30
19秒前
20秒前
TOM驳回了大个应助
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168294
求助须知:如何正确求助?哪些是违规求助? 2819584
关于积分的说明 7927169
捐赠科研通 2479425
什么是DOI,文献DOI怎么找? 1320833
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458