已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The structure and multifunctionality of high-boron transition metal borides *

材料科学 结晶学 Atom(片上系统) 价电子 化学键 过渡金属 共价键 电子 化学 生物化学 物理 有机化学 量子力学 计算机科学 催化作用 嵌入式系统
作者
Bo Zhao,Lu Wang,Qiang Tao,Pinwen Zhu
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:35 (17): 173001-173001 被引量:2
标识
DOI:10.1088/1361-648x/acbad6
摘要

Abstract High boron content transition metal (TM) borides (HB-TMBs) have recently been regarded as the promising candidate for superhard multifunctional materials. High hardness stems from the covalent bond skeleton formed by high content of boron (B) atoms to resist deformation. High valence electron density of TM and special electronic structure from p-d hybridization of B and TM are the sources of multifunction. However, the reason of hardness variation in different HB-TMBs is still a puzzle because hardness is a complex property mainly associated with structures, chemical bonds, and mechanical anisotropy. Rich types of hybridization in B atoms ( sp, sp 2 , sp 3 ) generate abundant structures in HB-TMBs. Studying the intrinsic interaction of structures and hardness or multifunction is significant to search new functional superhard materials. In this review, the stable structure, hardness, and multifunctionality of HB-TMBs are summarized. It is concluded that the structures of HB-TMBs are mainly composed by sandwiched stacking of B and TM layers. The hardness of HB-TMBs shows a increasing tendency with the decreasing atom radius. The polyhedron in strong B skeleton provides hardness support for HB-TMBs, among which C2/ m is the most possible structure to meet the superhard standard. The shear modulus ( G 0 ) generates a positive effect for hardness of HB-TMBs, but the effect from bulk modulus ( G 0 ) is complex. Importantly, materials with a value of B 0 / G 0 less than 1.1 are more possible to achieve the superhard standard. As for the electronic properties, almost all TMB 3 and TMB 4 structures exhibit metallic properties, and their density of states near the Fermi level are derived from the d electrons of TM. The excellent electrical property of HB-TMBs with higher B ratio such as ZrB 12 comes from the channels between B–B π -bond and TM-d orbitals. Some HB-TMBs also indicate superconductivity from special structures, most of them have stronger hybridization of d electrons from TM atoms than p electrons from B atoms near the Fermi level. This work is meaningful to further understand and uncover new functional superhard materials in HB-TMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情听南完成签到,获得积分10
1秒前
琥珀川发布了新的文献求助10
1秒前
1秒前
wanci应助旧辞采纳,获得10
1秒前
奋斗完成签到,获得积分10
2秒前
水尽云生处完成签到,获得积分10
3秒前
丝垚完成签到 ,获得积分10
4秒前
hahahayi发布了新的文献求助10
6秒前
彭于晏应助奋斗采纳,获得10
6秒前
10秒前
Yultuz友完成签到 ,获得积分10
12秒前
旧辞发布了新的文献求助10
13秒前
YXY发布了新的文献求助10
14秒前
16秒前
小遇完成签到 ,获得积分10
16秒前
搜集达人应助SYX采纳,获得10
18秒前
hahahayi完成签到,获得积分10
19秒前
JamesPei应助番茄采纳,获得10
20秒前
wsh发布了新的文献求助10
21秒前
25秒前
科目三应助wsh采纳,获得10
26秒前
饱满含玉发布了新的文献求助10
28秒前
舒心抽屉完成签到 ,获得积分10
35秒前
淡淡的如松完成签到 ,获得积分10
37秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
Singularity应助科研通管家采纳,获得10
38秒前
Singularity应助科研通管家采纳,获得10
38秒前
38秒前
Orange应助科研通管家采纳,获得30
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
shhoing应助科研通管家采纳,获得30
38秒前
小蘑菇应助科研通管家采纳,获得10
38秒前
我是老大应助科研通管家采纳,获得30
38秒前
DEF应助科研通管家采纳,获得200
38秒前
orixero应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
星辰大海应助科研通管家采纳,获得10
39秒前
大模型应助科研通管家采纳,获得10
39秒前
思思完成签到,获得积分10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671080
求助须知:如何正确求助?哪些是违规求助? 3227979
关于积分的说明 9777835
捐赠科研通 2938188
什么是DOI,文献DOI怎么找? 1609774
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962