Click-through rate prediction using transfer learning with fine-tuned parameters

计算机科学 学习迁移 传输(计算) 人工智能 机器学习 并行计算
作者
Xiangli Yang,Qing Liu,Rong Su,Ruiming Tang,Zhirong Liu,Xiuqiang He,Jianxi Yang
出处
期刊:Information Sciences [Elsevier]
卷期号:612: 188-200 被引量:11
标识
DOI:10.1016/j.ins.2022.08.009
摘要

The figure presents the pre-trained CTR model, the fine-tuned CTR model, and our proposed AutoFT framework from left to right. The pre-trained CTR model with random parameters starting point is optimized based on the data from source domains or based on the data from all domains. The fine-tuned CTR model is initialized with trained parameters in source scenarios and optimized with data from the new target domain. AutoFT involves three sets of parameters: the light-blue boxes contain parameters from the pre-trained CTR model, the dark-blue boxes contain parameters initialized by traditional fine-tuning strategy will be re-optimized during training and the red boxes contain the parameters of the policy networks. • The proposed AutoFT automatically finds a route between the pre-trained network and the siamese fine-tuned network per instance in the target domain and is compatible with any deep CTR models. • The transfer policy for the embedding layer and the feature interaction layers can be trained synchronously with deep CTR models. • The result shows that the lower layers may represent more general features while higher layers need more fine-tuning to fit a specific target domain. In real business platforms, recommendation systems usually need to predict the CTR of multiple business. Since different scenarios may have common feature interactions, knowledge transferring based methods are often used by re-optimizing the pre-trained CTR model from source scenarios to a new target domain. In addition to knowledge transfer, it is noteworthy that generalizing target domain data outside of the CTR model accurately is also important when re-training all of the fine-tuned parameters. Generally, the pre-trained model trained on large source domains can represent the characteristics of different instances and capture typical feature interactions. It would be useful to directly reuse fine-tuned parameters from source domains to serve the target domain. However, different instances of the target domain may need different amounts of source information to fine-tune the model parameters, and these decisions of freezing or re-optimizing model parameters, which highly depend on the fine-tuned model and target instances, may require much manual effort. In this paper, we propose an end-to-end transfer learning framework with fine-tuned parameters for CTR prediction, called Automatic Fine-Tuning (AutoFT). The principal component of AutoFT is a set of learnable transfer policies that independently determine how the specific instance-based fine-tuning policies should be trained, which decide the routing in the embedding representations and the high-order feature representations layer by layer in deep CTR model. Extensive tests on two benchmarks and one real commercial recommender system deployed in Huawei's App Store show that AutoFT can greatly increase CTR prediction performance when compared to current transferring methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助熬夜的桃子采纳,获得10
刚刚
1秒前
wms发布了新的文献求助10
1秒前
2秒前
4秒前
下一秒的王完成签到,获得积分0
4秒前
6秒前
kk发布了新的文献求助10
7秒前
7秒前
学术菜菜完成签到,获得积分10
7秒前
8秒前
fafa发布了新的文献求助10
8秒前
明明发布了新的文献求助10
9秒前
Passskd发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
kk完成签到,获得积分10
11秒前
滾滾完成签到,获得积分10
11秒前
12秒前
12秒前
gstaihn发布了新的文献求助10
13秒前
zzz发布了新的文献求助10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
16秒前
17秒前
17秒前
17秒前
17秒前
时光如梭发布了新的文献求助10
18秒前
酷炫应助jiangfuuuu采纳,获得10
19秒前
Lily发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161657
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897803
捐赠科研通 2471830
什么是DOI,文献DOI怎么找? 1316176
科研通“疑难数据库(出版商)”最低求助积分说明 631245
版权声明 602129