亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Click-through rate prediction using transfer learning with fine-tuned parameters

计算机科学 学习迁移 传输(计算) 人工智能 机器学习 并行计算
作者
Xiangli Yang,Qing Liu,Rong Su,Ruiming Tang,Zhirong Liu,Xiuqiang He,Jianxi Yang
出处
期刊:Information Sciences [Elsevier]
卷期号:612: 188-200 被引量:11
标识
DOI:10.1016/j.ins.2022.08.009
摘要

The figure presents the pre-trained CTR model, the fine-tuned CTR model, and our proposed AutoFT framework from left to right. The pre-trained CTR model with random parameters starting point is optimized based on the data from source domains or based on the data from all domains. The fine-tuned CTR model is initialized with trained parameters in source scenarios and optimized with data from the new target domain. AutoFT involves three sets of parameters: the light-blue boxes contain parameters from the pre-trained CTR model, the dark-blue boxes contain parameters initialized by traditional fine-tuning strategy will be re-optimized during training and the red boxes contain the parameters of the policy networks. • The proposed AutoFT automatically finds a route between the pre-trained network and the siamese fine-tuned network per instance in the target domain and is compatible with any deep CTR models. • The transfer policy for the embedding layer and the feature interaction layers can be trained synchronously with deep CTR models. • The result shows that the lower layers may represent more general features while higher layers need more fine-tuning to fit a specific target domain. In real business platforms, recommendation systems usually need to predict the CTR of multiple business. Since different scenarios may have common feature interactions, knowledge transferring based methods are often used by re-optimizing the pre-trained CTR model from source scenarios to a new target domain. In addition to knowledge transfer, it is noteworthy that generalizing target domain data outside of the CTR model accurately is also important when re-training all of the fine-tuned parameters. Generally, the pre-trained model trained on large source domains can represent the characteristics of different instances and capture typical feature interactions. It would be useful to directly reuse fine-tuned parameters from source domains to serve the target domain. However, different instances of the target domain may need different amounts of source information to fine-tune the model parameters, and these decisions of freezing or re-optimizing model parameters, which highly depend on the fine-tuned model and target instances, may require much manual effort. In this paper, we propose an end-to-end transfer learning framework with fine-tuned parameters for CTR prediction, called Automatic Fine-Tuning (AutoFT). The principal component of AutoFT is a set of learnable transfer policies that independently determine how the specific instance-based fine-tuning policies should be trained, which decide the routing in the embedding representations and the high-order feature representations layer by layer in deep CTR model. Extensive tests on two benchmarks and one real commercial recommender system deployed in Huawei's App Store show that AutoFT can greatly increase CTR prediction performance when compared to current transferring methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuoping完成签到,获得积分0
22秒前
1分钟前
罗乐天完成签到,获得积分10
1分钟前
罗乐天发布了新的文献求助10
1分钟前
天马完成签到,获得积分20
1分钟前
qq发布了新的文献求助10
2分钟前
2分钟前
2分钟前
老石完成签到 ,获得积分10
3分钟前
浮游应助美美采纳,获得10
3分钟前
酷波er应助broky采纳,获得10
3分钟前
Criminology34举报桀庚求助涉嫌违规
3分钟前
3分钟前
西瓜发布了新的文献求助10
3分钟前
3分钟前
可爱的函函应助西瓜采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
broky发布了新的文献求助10
4分钟前
sherry完成签到 ,获得积分10
4分钟前
broky完成签到,获得积分10
4分钟前
Double发布了新的文献求助30
4分钟前
4分钟前
4分钟前
4分钟前
白面包不吃鱼完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
Double发布了新的文献求助10
5分钟前
5分钟前
rong完成签到,获得积分10
5分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
6分钟前
简单思萱发布了新的文献求助10
6分钟前
可爱的函函应助简单思萱采纳,获得10
7分钟前
简单思萱完成签到,获得积分10
7分钟前
冷如松发布了新的文献求助30
7分钟前
冷如松完成签到,获得积分10
7分钟前
研友_892kOL完成签到,获得积分10
8分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346748
求助须知:如何正确求助?哪些是违规求助? 4481156
关于积分的说明 13947333
捐赠科研通 4379158
什么是DOI,文献DOI怎么找? 2406182
邀请新用户注册赠送积分活动 1398752
关于科研通互助平台的介绍 1371661