Click-through rate prediction using transfer learning with fine-tuned parameters

计算机科学 学习迁移 传输(计算) 人工智能 机器学习 并行计算
作者
Xiangli Yang,Qing Liu,Rong Su,Ruiming Tang,Zhirong Liu,Xiuqiang He,Jianxi Yang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:612: 188-200 被引量:11
标识
DOI:10.1016/j.ins.2022.08.009
摘要

The figure presents the pre-trained CTR model, the fine-tuned CTR model, and our proposed AutoFT framework from left to right. The pre-trained CTR model with random parameters starting point is optimized based on the data from source domains or based on the data from all domains. The fine-tuned CTR model is initialized with trained parameters in source scenarios and optimized with data from the new target domain. AutoFT involves three sets of parameters: the light-blue boxes contain parameters from the pre-trained CTR model, the dark-blue boxes contain parameters initialized by traditional fine-tuning strategy will be re-optimized during training and the red boxes contain the parameters of the policy networks. • The proposed AutoFT automatically finds a route between the pre-trained network and the siamese fine-tuned network per instance in the target domain and is compatible with any deep CTR models. • The transfer policy for the embedding layer and the feature interaction layers can be trained synchronously with deep CTR models. • The result shows that the lower layers may represent more general features while higher layers need more fine-tuning to fit a specific target domain. In real business platforms, recommendation systems usually need to predict the CTR of multiple business. Since different scenarios may have common feature interactions, knowledge transferring based methods are often used by re-optimizing the pre-trained CTR model from source scenarios to a new target domain. In addition to knowledge transfer, it is noteworthy that generalizing target domain data outside of the CTR model accurately is also important when re-training all of the fine-tuned parameters. Generally, the pre-trained model trained on large source domains can represent the characteristics of different instances and capture typical feature interactions. It would be useful to directly reuse fine-tuned parameters from source domains to serve the target domain. However, different instances of the target domain may need different amounts of source information to fine-tune the model parameters, and these decisions of freezing or re-optimizing model parameters, which highly depend on the fine-tuned model and target instances, may require much manual effort. In this paper, we propose an end-to-end transfer learning framework with fine-tuned parameters for CTR prediction, called Automatic Fine-Tuning (AutoFT). The principal component of AutoFT is a set of learnable transfer policies that independently determine how the specific instance-based fine-tuning policies should be trained, which decide the routing in the embedding representations and the high-order feature representations layer by layer in deep CTR model. Extensive tests on two benchmarks and one real commercial recommender system deployed in Huawei's App Store show that AutoFT can greatly increase CTR prediction performance when compared to current transferring methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumu应助神奇科研圆采纳,获得10
刚刚
yuiip发布了新的文献求助10
1秒前
1秒前
果果完成签到,获得积分10
2秒前
amwlsai完成签到,获得积分10
2秒前
领导范儿应助GEeZiii采纳,获得10
3秒前
不吃了完成签到 ,获得积分0
3秒前
WuchangI发布了新的文献求助10
4秒前
果果发布了新的文献求助10
5秒前
5秒前
满三江完成签到,获得积分10
6秒前
gudujian870928完成签到,获得积分10
7秒前
8秒前
SYLH应助李2003采纳,获得10
9秒前
rookieLi应助boshi采纳,获得10
9秒前
Ula发布了新的文献求助10
9秒前
方方完成签到,获得积分10
9秒前
Ava应助llj采纳,获得10
10秒前
123发布了新的文献求助10
10秒前
平常的狗应助林士采纳,获得10
11秒前
11秒前
芝麻完成签到,获得积分10
11秒前
小兵发布了新的文献求助10
11秒前
12秒前
12秒前
balabala发布了新的文献求助10
12秒前
12秒前
091完成签到 ,获得积分10
12秒前
苹果蜗牛发布了新的文献求助10
13秒前
科研小垃圾完成签到,获得积分10
13秒前
15秒前
15秒前
皮划艇完成签到,获得积分20
15秒前
15秒前
酷波er应助苹果采纳,获得10
15秒前
方方发布了新的文献求助10
16秒前
16秒前
研友_VZG7GZ应助你可真行采纳,获得10
17秒前
花花发布了新的文献求助10
17秒前
SYLH应助XFaning采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650