A self-evolving fuzzy system online prediction-based dynamic multi-objective evolutionary algorithm

进化算法 水准点(测量) 计算机科学 人口 进化计算 非线性系统 集合(抽象数据类型) 数学优化 变量(数学) 模糊逻辑 计算智能 算法 人工智能 数学 数学分析 物理 人口学 大地测量学 量子力学 社会学 程序设计语言 地理
作者
Jing Sun,Xingjia Gan,Dunwei Gong,Xiaoke Tang,Hongwei Dai,Zhaoman Zhong
出处
期刊:Information Sciences [Elsevier]
卷期号:612: 638-654 被引量:12
标识
DOI:10.1016/j.ins.2022.08.072
摘要

The changes of dynamic multi-objective optimization problems in decision space are usually nonlinear. However, the previous dynamic multi-objective evolutionary algorithms usually use linear prediction models to generate the initial population in the new environment, and some nonlinear prediction models often have high computational cost. Therefore, it is difficult to quickly and accurately respond to nonlinear environmental changes. This paper presents a dynamic multi-objective evolutionary algorithm based on online prediction of self-evolving fuzzy system (SEFS). In this algorithm, the decomposition based multi-objective evolutionary algorithm (MOEA/D) acts as the static optimizer. When the environment changes, individuals are first put into an associate set of their corresponding weight vectors. Then, the time series of each variable is constructed based on the associate set, and the SEFS online prediction model is established. Finally, an environmental response strategy based on SEFS is designed to quickly generate an initial population with high performance in the new environment. The proposed algorithm is compared with seven state-of-the-art dynamic multi-objective evolutionary algorithms on 20 benchmark functions. Experimental results show that the proposed algorithm can quickly and accurately respond to nonlinear environmental changes, and has competitiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助hhhhhhhh采纳,获得10
刚刚
完美世界应助hhhhhhhh采纳,获得10
刚刚
Karol发布了新的文献求助10
刚刚
1秒前
NexusExplorer应助卡皮巴拉采纳,获得10
2秒前
顾矜应助球闪采纳,获得10
2秒前
4秒前
4秒前
弄啥嘞昂应助QR采纳,获得10
5秒前
上官若男应助QR采纳,获得10
5秒前
毛豆应助QR采纳,获得10
5秒前
orixero应助QR采纳,获得10
5秒前
隐形曼青应助卡皮巴拉采纳,获得10
7秒前
8秒前
伊酒应助zz采纳,获得10
9秒前
夜捕白日梦完成签到,获得积分10
9秒前
小番茄完成签到,获得积分10
10秒前
11秒前
科研小能手完成签到 ,获得积分10
12秒前
13秒前
爱哭的小女孩完成签到,获得积分20
14秒前
橙子发布了新的文献求助10
15秒前
灵巧书本完成签到,获得积分20
16秒前
小陈发布了新的文献求助10
18秒前
zhongzhong发布了新的文献求助10
21秒前
21秒前
廖佰城完成签到,获得积分10
24秒前
25秒前
充电宝应助小陈采纳,获得10
26秒前
27秒前
风评发布了新的文献求助10
28秒前
丹丹关注了科研通微信公众号
29秒前
Lucas应助weeqe采纳,获得10
29秒前
kyoko完成签到,获得积分20
29秒前
zhongzhong完成签到,获得积分10
31秒前
31秒前
FIN应助123采纳,获得10
31秒前
完美世界应助稳定上分采纳,获得10
33秒前
33秒前
SciGPT应助晶晶妹妹采纳,获得10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605