Data-driven methodology to predict the ICU length of stay: A multicentre study of 99,492 admissions in 109 Brazilian units

医学 布里氏评分 急诊医学 重症监护室 逻辑回归 重症监护 队列 回顾性队列研究 重症监护医学 内科学 统计 数学
作者
Igor Tona Peres,Sílvio Hamacher,Fernando Luiz Cyrino Oliveira,Fernando A. Bozza,Jorge I. Salluh
出处
期刊:Anaesthesia, critical care & pain medicine [Elsevier]
卷期号:41 (6): 101142-101142 被引量:12
标识
DOI:10.1016/j.accpm.2022.101142
摘要

The length of stay (LoS) is one of the most used metrics for resource use in Intensive Care Units (ICU). We propose a structured data-driven methodology to predict the ICU length of stay and the risk of prolonged stay, and its application in a large multicentre Brazilian ICU database. Demographic data, comorbidities, complications, laboratory data, and primary and secondary diagnosis were prospectively collected and retrospectively analysed by a data-driven methodology, which includes eight different machine learning models and a stacking model. The study setting included 109 mixed-type ICUs from 38 Brazilian hospitals and the external validation was performed by 93 medical-surgical ICUs of 55 hospitals in Brazil. A cohort of 99,492 adult ICU admissions were included from the 1st of January to the 31st of December 2019. The stacking model combining Random Forests and Linear Regression presented the best results to predict ICU length of stay (RMSE = 3.82; MAE = 2.52; R² = 0.36). The prediction model for the risk of long stay were accurate to early identify prolonged stay patients (Brier Score = 0.04, AUC = 0.87, PPV = 0.83, NPV = 0.95). The data-driven methodology to predict ICU length of stay and the risk of long-stay proved accurate in a large multicentre cohort of general ICU patients. The proposed models are helpful to predict the individual length of stay and to early identify patients with high risk of prolonged stay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助雯雯子采纳,获得30
1秒前
breath完成签到,获得积分10
3秒前
6秒前
852应助gxqqqqqqq采纳,获得10
6秒前
糊糊完成签到 ,获得积分10
6秒前
9秒前
阿北应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得30
9秒前
李健应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得30
9秒前
无花果应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得20
9秒前
豆豆发布了新的文献求助10
10秒前
Bobby完成签到,获得积分10
10秒前
10秒前
完美世界应助榴莲姑娘采纳,获得10
10秒前
mamacita完成签到,获得积分10
11秒前
一路硕博完成签到,获得积分10
11秒前
星宫金魁完成签到 ,获得积分10
12秒前
JamesPei应助请安静采纳,获得10
12秒前
13秒前
13秒前
13秒前
啦啦啦啦完成签到 ,获得积分10
13秒前
哆啦η梦完成签到,获得积分10
14秒前
吃吃货完成签到 ,获得积分10
14秒前
bkagyin应助wsh采纳,获得10
15秒前
16秒前
hcd12138完成签到,获得积分10
16秒前
善学以致用应助jialin采纳,获得10
16秒前
17秒前
huangJP发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
pptt发布了新的文献求助10
18秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112109
求助须知:如何正确求助?哪些是违规求助? 2762259
关于积分的说明 7669812
捐赠科研通 2417362
什么是DOI,文献DOI怎么找? 1283102
科研通“疑难数据库(出版商)”最低求助积分说明 619297
版权声明 599583