A self-adhesive and low-temperature-tolerant strain sensor based on organohydrogel for extreme ice and snow motion monitoring

材料科学 胶粘剂 纳米技术 智能聚合物 粘附 聚合物 电导率 极端环境 复合材料 计算机科学 化学 气象学 物理化学 图层(电子) 细菌 物理 生物 遗传学
作者
Zhongwu Bei,Yangwei Chen,Shixing Li,Zhiqiang Zhu,Jietao Xiong,Rongxiang He,Chao Zhu,Yiping Cao,Zhiyong Qian
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:451: 138675-138675 被引量:42
标识
DOI:10.1016/j.cej.2022.138675
摘要

The design of conductive hydrogel materials with cold-adaptive and flexible properties is of great practical significance for preparing flexible wearable electronics to adapt to the application needs of different environments. However, traditional hydrogel-based sensors are often severely affected in terms of operating temperature range, detection accuracy, and long-term stability under extreme environments. In this study, inspired by the freezing resistance and adhesion chemistry of organisms in the nature, an organohydrogel with self-adhesive characteristics and extreme temperature tolerance, consisting of a binary solvent system of water and glycerol, is fabricated. A pyrogallol–borate complex and polypyrrole nanoparticles are incorporated into the polymer networks, which provide excellent adhesion and electrical conductivity to the organohydrogel, respectively. This conductive and shape-adaptable organohydrogel exhibits extraordinary self-adhesion, suitable mechanical strength, and excellent fatigue resistance for meeting personalized application requirements. Meanwhile, it can withstand a low temperature of −80 °C for 24 h without freezing and maintain an excellent electrical conductivity (0.12 S m−1) and high gauge factor (GF = 4.9). Therefore, the organohydrogel-based sensor exhibits excellent antifreeze properties and can be used in personal health and human–machine interfaces for extreme ice and snow sports. More importantly, the sensor can also simulate the standard of real-time capture of the skier’s body movements, providing a reference for judges to score. This study provides an exciting new direction for the development of wearable strain sensing devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkkkk完成签到,获得积分10
2秒前
luoluo完成签到,获得积分10
2秒前
jj完成签到,获得积分10
2秒前
5秒前
jagger完成签到,获得积分10
6秒前
zsj完成签到,获得积分10
8秒前
ying完成签到,获得积分10
8秒前
彭于晏应助大方荟采纳,获得10
9秒前
rh完成签到,获得积分10
12秒前
to高坚果发布了新的文献求助30
12秒前
Tim完成签到,获得积分10
17秒前
21秒前
程程完成签到,获得积分10
23秒前
大方荟发布了新的文献求助10
24秒前
大气的尔蓝完成签到,获得积分10
26秒前
27秒前
阿姊完成签到 ,获得积分10
30秒前
完美麦片完成签到,获得积分10
30秒前
哈哈哈完成签到 ,获得积分10
31秒前
包飞雪发布了新的文献求助30
32秒前
36秒前
稳重的芹菜完成签到,获得积分20
40秒前
41秒前
山山完成签到 ,获得积分10
41秒前
郭星星完成签到,获得积分10
42秒前
43秒前
PMY发布了新的文献求助10
46秒前
49秒前
眼睛大鸡翅完成签到,获得积分10
54秒前
W29完成签到 ,获得积分10
54秒前
郭自同完成签到,获得积分10
54秒前
Dabiel1213完成签到,获得积分10
55秒前
Echoheart完成签到,获得积分10
55秒前
jia完成签到,获得积分10
56秒前
一只咸鱼发布了新的文献求助10
57秒前
PMY完成签到,获得积分10
59秒前
蓝景轩辕完成签到 ,获得积分10
1分钟前
chai完成签到,获得积分10
1分钟前
阿俊1212完成签到,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511036
关于积分的说明 11156066
捐赠科研通 3245497
什么是DOI,文献DOI怎么找? 1793093
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255