Weight-adjusted waist index is not superior to conventional anthropometric indices for predicting type 2 diabetes: a secondary analysis of a retrospective cohort study

医学 四分位数 体质指数 接收机工作特性 腰围 人体测量学 人口 回顾性队列研究 队列 2型糖尿病 2型糖尿病 肥胖 队列研究 内科学 人口学 糖尿病 置信区间 内分泌学 环境卫生 社会学
作者
Huaxin Sun,Yao Li,Jia Shi,Kai Li,Yang Zhao,Luxiang Shang,Baopeng Tang
出处
期刊:Family Practice [Oxford University Press]
卷期号:40 (5-6): 782-788 被引量:5
标识
DOI:10.1093/fampra/cmad047
摘要

Abstract Background Weight-adjusted waist index (WWI) is a new anthropometric indicator to assess adiposity. Current knowledge regarding its association with type 2 diabetes mellitus (T2DM) is limited. This present study aims to evaluate the association of WWI with the risk of T2DM in the Japanese population, and to compare its predictive ability with body mass index (BMI) and waist circumference (WC). Methods This was a secondary analysis of a retrospective cohort study involving 15,464 participants. Participants were divided into quartiles based on baseline WWI levels. Cox regression model, Kaplan–Meier curve, and smooth curve fitting were used to explore the relationship between WWI and T2DM. The discriminative ability of obesity indices in predicting T2DM was compared by the receiver operating characteristic (ROC) curve. Results After a mean follow-up of 6.05 years, 373 participants were diagnosed with T2DM. In fully adjusted models, the risk of incident T2DM was 1.96 times higher for each 1-unit increment in WWI levels (95% CI: 1.61–2.39, P < 0.001). Smooth curve fitting analysis showed a linear positive association between baseline WWI and new-onset T2DM. Subgroup analysis showed consistent results which subjects in the 4th WWI quartile had the highest risk of developing T2DM in different age, gender, and BMI groups. WWI did not exhibit better predictive ability compared with BMI and WC in the results of ROC curve. Conclusion WWI, a new metabolic index, can be used to predict new-onset T2DM in the Japanese population. However, its predictive capability was not superior to conventional anthropometric indices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TZMY应助Joyj99采纳,获得10
刚刚
橘涂初九发布了新的文献求助10
2秒前
cdsd完成签到,获得积分10
2秒前
酒石酸发布了新的文献求助10
4秒前
kzhao发布了新的文献求助10
4秒前
5秒前
6秒前
嗯呐完成签到,获得积分10
7秒前
蛙蛙完成签到,获得积分10
8秒前
8秒前
魔叶树完成签到 ,获得积分0
9秒前
9秒前
英俊的铭应助kzhao采纳,获得10
10秒前
10秒前
唯梦发布了新的文献求助10
11秒前
CipherSage应助活力的天空采纳,获得10
12秒前
喜悦的飞机完成签到,获得积分10
12秒前
Suchen发布了新的文献求助10
15秒前
17秒前
科研通AI2S应助XxxxxxENT采纳,获得10
19秒前
20秒前
20秒前
奋斗魂幽完成签到 ,获得积分10
23秒前
Akim应助唯梦采纳,获得10
24秒前
24秒前
Suchen完成签到,获得积分10
24秒前
jojo完成签到 ,获得积分10
25秒前
zzf完成签到 ,获得积分10
25秒前
马德里就思议完成签到,获得积分10
25秒前
浪而而发布了新的文献求助10
26秒前
研友_VZG7GZ应助坚持看文献采纳,获得10
27秒前
奋斗的蓝蜗牛完成签到,获得积分10
27秒前
快乐滑板应助1231采纳,获得10
27秒前
28秒前
酷波er应助海豚采纳,获得10
29秒前
热天气来一个绿茶降降温完成签到,获得积分10
29秒前
30秒前
31秒前
31秒前
34秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3389307
求助须知:如何正确求助?哪些是违规求助? 3001463
关于积分的说明 8798030
捐赠科研通 2687957
什么是DOI,文献DOI怎么找? 1472331
科研通“疑难数据库(出版商)”最低求助积分说明 680896
邀请新用户注册赠送积分活动 673535