Efficacy of Hydroxyapatite Nanoparticles as Phosphorus Fertilizer in Andisols and Oxisols

氧溶胶 肥料 环境科学 农学 化学 土壤科学 土壤水分 生物 有机化学
作者
Daniela Montalvo,Mike J. McLaughlin,Fien Degryse
出处
期刊:Soil Science Society of America Journal [Wiley]
卷期号:79 (2): 551-558 被引量:135
标识
DOI:10.2136/sssaj2014.09.0373
摘要

Soil Science Society of America JournalVolume 79, Issue 2 p. 551-558 Soil Fertility & Plant Nutrition Efficacy of Hydroxyapatite Nanoparticles as Phosphorus Fertilizer in Andisols and Oxisols Daniela Montalvo, Corresponding Author Daniela Montalvo [email protected] Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 Australia CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064 AustraliaCorresponding author ([email protected]).Search for more papers by this authorMike J. McLaughlin, Mike J. McLaughlin Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 Australia CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064 AustraliaSearch for more papers by this authorFien Degryse, Fien Degryse Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 AustraliaSearch for more papers by this author Daniela Montalvo, Corresponding Author Daniela Montalvo [email protected] Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 Australia CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064 AustraliaCorresponding author ([email protected]).Search for more papers by this authorMike J. McLaughlin, Mike J. McLaughlin Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 Australia CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064 AustraliaSearch for more papers by this authorFien Degryse, Fien Degryse Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 AustraliaSearch for more papers by this author First published: 03 February 2015 https://doi.org/10.2136/sssaj2014.09.0373Citations: 101 All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Improving phosphorus (P) fertilizer efficiency is a challenge in acidic and strongly P sorbing soils. Nanotechnology may have potential to create more efficient fertilizers. Hydroxyapatite nanoparticles (n-HAP) were evaluated as a potential fertilizer to improve P efficiency based on the hypothesis that nano-sized particles can potentially move in the soil and reach the plant roots through the mass flow of soil water to roots created by transpiration. The transport of nano-sized and bulk-sized HAP was evaluated in saturated soil column experiments. Availability of P from n-HAP, bulk-HAP, and triple superphosphate (TSP) to wheat (Triticum aestivum) was evaluated by a 33P isotopic dilution technique in a glasshouse study with two Andisols from Chile and New Zealand and two Oxisols from Australia. Transport experiment showed that 5% of the applied n-HAP leached in the Andisol and <1% in the Oxisol. Bulk-HAP did not move in either of the soils. Across all soils, the P uptake and the percentage of P in the plant that was derived from the fertilizer followed the order: TSP > n-HAP > bulk-HAP. Although n-HAP performed better than bulk-HAP, most likely because of faster dissolution, TSP was still a more efficient P fertilizer. REFERENCES 1Alston, A.M., and Chin, K.W.. 1974. Response of subterranean clover to rock phosphates as affected by particle size and depth of mixing in the soil. Aust. J. Exp. Agric. Anim. Husb. 14: 649– 655. https://doi.org/10.1071/EA9740649 2Borm, P., Klaessig, F.C., Landry, T.D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R., and Wood, S.. 2006. Research strategies for safety evaluation of nanomaterials, Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 90: 23– 32. https://doi.org/10.1093/toxsci/kfj084 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000235429400003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 3Cakmak, I. 2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 247: 3– 24. https://doi.org/10.1023/A:1021194511492 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000179358800001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 4Casanova, E., Salas, A.M., and Toro, M.. 2002. Evaluating the effectiveness of phosphate fertilizers in some Venezuelan soils. Nutr. Cycling Agroecosyst. 63: 13– 20. https://doi.org/10.1023/A:1020582513441 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000178392600002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 5Chien, S.H., Prochnow, L.I., and Cantarella, H.. 2009. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 102: 267– 322. https://doi.org/10.1016/S0065-2113(09)01008-6 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000266721600008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 6De Rosa, M.C., Monreal, C., Schnitzer, M., Walsh, R., and Sultan, Y.. 2010. Nanotechnology in fertilizers. Nat. Nanotechnol. 5: 91. https://doi.org/10.1038/nnano.2010.2 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000275058500002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 7Donn, M.J., and Menzies, N.W.. 2005. Simulated rainwater effects on anion exchange capacity and nitrate retention in Ferrosols. Soil Res. 43: 33– 42. https://doi.org/10.1071/SR04015 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000227051700004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 8Fox, K., Tran, P.A., and Tran, N.. 2012. Recent advances in research applications of nanophase hydroxyapatite. ChemPhysChem 13: 2495– 2506. https://doi.org/10.1002/cphc.201200080 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000306126000006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 9Ghormade, V., Deshpande, M.V., and Paknikar, K.M.. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29: 792– 803. https://doi.org/10.1016/j.biotechadv.2011.06.007 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000296821900021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10Gogos, A., Knauer, K., and Bucheli, T.D.. 2012. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60: 9781– 9792. https://doi.org/10.1021/jf302154y http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000309335100001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 11Hammond, L.L., Chien, S.H., and Mokwunye, A.U.. 1986. Agronomic value of unacidulated and partially acidulated phosphate rocks indigenous to the tropics. Adv. Agron. 40: 89– 140. https://doi.org/10.1016/S0065-2113(08)60281-3 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1986H873100002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 12Hamon, R.E., Bertrand, I., and McLaughlin, M.J.. 2002. Use and abuse of isotopic exchange data in soil chemistry. Aust. J. Soil Res. 40: 1371– 1381. https://doi.org/10.1071/SR02046 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000179700900009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 13Kanabo, I.A.K., and Gilkes, R.J.. 1988. The effect of particle size on North Carolina phosphate rock on its dissolution in soil and on levels of bicarbonate-soluble phosphorus. Fert. Res. 15: 137– 145. https://doi.org/10.1007/BF01050675 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1988N385300004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 14Khasawneh, F., and Doll, E.. 1979. The use of phosphate rock for direct application to soils. Adv. Agron. 30: 159– 206. https://doi.org/10.1016/S0065-2113(08)60706-3 15Kottegoda, N., Munaweera, I., Madusanka, N., and Karunaratne, V.. 2011. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr. Sci. 101: 73– 78.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000292947700020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 16Leeuwenburgh, S.C.G., Ana, I.D., and Jansen, J.A.. 2010. Sodium citrate as an effective dispersant for the synthesis of inorganic-organic composites with a nanodispersed mineral phase. Acta Biomater. 6: 836– 844. https://doi.org/10.1016/j.actbio.2009.09.005 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000274943500014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 17Liu, R., and Lal, R.. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4: 5686. https://doi.org/10.1038/srep05686. 18Mason, S., McNeill, A., McLaughlin, M.J., and Zhang, H.. 2010. Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods. Plant Soil 337: 243– 258. https://doi.org/10.1007/s11104-010-0521-0 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000284159900018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 19Matejovic, I. 1997. Determination of carbon and nitrogen in samples of various soils by the dry combustion. Commun. Soil Sci. Plant Anal. 28: 1499– 1511. https://doi.org/10.1080/00103629709369892 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1997YD52200003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 20McKenzie, N.J., Coughlan, K.J., and Cresswell, H.P.. 2002. Soil physical measurements and interpretation for land evaluation. CSIRO, Collingwood, VIC, Australia. 21McLaughlin, M.J., McBeath, T.M., Smernik, R., Stacey, S.P., Ajiboye, B., and Guppy, C.. 2011. The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: An Australian perspective. Plant Soil 349: 69– 87. https://doi.org/10.1007/s11104-011-0907-7 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000297738400007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 22Montalvo, D., Degryse, F., and McLaughlin, M.J.. 2014. Fluid fertilizers improve phosphorus diffusion but not lability in Andisols and Oxisols. Soil Sci. Soc. Am. J. 78: 214– 224. https://doi.org/10.2136/sssaj2013.02.0075 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000331134000024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 23Montalvo, D., Degryse, F., and McLaughlin, M.J.. 2015. Agronomic effectiveness of granular and fluid phosphorus fertilizers in Andisols and Oxisols. Soil Sci. Soc. Am. J. 79:https://doi.org/10.2136/sssaj2014.04–0178 (in press). 24Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., and Kumar, D.S.. 2010. Nanoparticulate material delivery to plants. Plant Sci. 179: 154– 163. https://doi.org/10.1016/j.plantsci.2010.04.012 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000280329100002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 25Powers, K.W., Brown, S.C., Krishna, V.B., Wasdo, S.C., Moudgil, B.M., and Roberts, S.M.. 2006. Research strategies for safety evaluation of nanomaterials, Part VI: Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci. 90: 296– 303. https://doi.org/10.1093/toxsci/kfj099 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000236106000002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 26Pypers, P., Loon, L., Diels, J., Abaidoo, R., Smolders, E., and Merckx, R.. 2006. Plant-available P for maize and cowpea in P-deficient soils from the Nigerian Northern Guinea Savanna— Comparison of E- and L-values. Plant Soil 283: 251– 264. https://doi.org/10.1007/s11104-006-0016-1 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000239042200022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 27Rayment, G.E., and Higginson, F.R.. 1992. Australian laboratory handbook of soil and water chemical methods. Inkata, Melbourne, VIC, Australia. 28Rayment, G.E., and Lyons, D.J.. 2011. Soil chemical methods—Australasia. CSIRO, Collingwood, VIC, Australia. 29Sanchez, P.A., and Uehara, G.. 1980. Management considerations for acid soils with high phosphorus fixation capacity. In: F.E. Khasawneh et al., editors, The role of phosphorus in agriculture. ASA, CSSA, and SSSA, Madison, WI. p. 471– 514. 30Sanchez, P.A., and Salinas, J.G.. 1981. Low-input technology for managing oxisols and ultisols in tropical America. Adv. Agron. 34: 279– 406. https://doi.org/10.1016/S0065-2113(08)60889-5 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1981MW22300008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 31Sasson, Y., Levy-Ruso, G., Toledano, O., and Ishaaya, I.. 2007. Nanosuspensions: Emerging novel agrochemical formulations. In: I. Ishaaya et al., editors, Insecticides design using advanced technologies. Springer, Berlin. p. 1– 39. 32Singh, B., and Gilkes, R.. 1991. Phosphorus sorption in relation to soil properties for the major soil types of South-Western Australia. Soil Res. 29: 603– 618. https://doi.org/10.1071/SR9910603 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1991GE51200003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 33 Soil Survey Staff. 2003. Keys to soil taxonomy. 9th ed. USDA-NRCS, Washington, DC. 34Swain, S.K., Dorozhkin, S.V., and Sarkar, D.. 2012. Synthesis and dispersion of hydroxyapatite nanopowders. Mater. Sci. Eng. C 32: 1237– 1240.https://doi.org/10.1016/j.msec.2012.03.014 35Wang, D., Bradford, S.A., Paradelo, M., Peijnenburg, W.J.G.M., and Zhou, D.. 2012a. Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand. Soil Sci. Soc. Am. J. 76: 375– 388. https://doi.org/10.2136/sssaj2011.0203 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000300644400007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 36Wang, D., Bradford, S.A., Harvey, R.W., Gao, B., Cang, L., and Zhou, D.. 2012b. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. Environ. Sci. Technol. 46: 2738– 2745. https://doi.org/10.1021/es203784u http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000301023700036&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 37Wang, D., Chu, L., Paradelo, M., Peijnenburg, W.J.G.M., Wang, Y., and Zhou, D.. 2011. Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition. J. Colloid Interface Sci. 360: 398– 407. https://doi.org/10.1016/j.jcis.2011.04.064 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000292066100012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 38Watkinson, J. 1994. Dissolution rate of phosphate rock particles having a wide range of sizes. Soil Res. 32: 1009– 1014. https://doi.org/10.1071/SR9941009 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1994PD70800010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 39Zarcinas, B.A., McLaughlin, M.J., and Smart, M.K.. 1996. The effect of acid digestion technique on the performance of nebulization systems used in inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 27: 1331– 1354. https://doi.org/10.1080/00103629609369636 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1996UJ93500032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Citing Literature Volume79, Issue2March-April 2015Pages 551-558 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YHX9910完成签到,获得积分10
刚刚
在水一方应助郑小七采纳,获得10
刚刚
玉崟发布了新的文献求助10
1秒前
1秒前
刘旭阳完成签到,获得积分10
1秒前
1秒前
1秒前
星星泡饭完成签到,获得积分10
2秒前
2秒前
2秒前
King16完成签到,获得积分10
2秒前
2秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
jmy完成签到,获得积分10
3秒前
Leif应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
积极的板栗完成签到 ,获得积分10
3秒前
咯咚完成签到 ,获得积分10
3秒前
ding应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
maox1aoxin应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
QXS发布了新的文献求助10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759