摘要
Soil Science Society of America JournalVolume 79, Issue 2 p. 551-558 Soil Fertility & Plant Nutrition Efficacy of Hydroxyapatite Nanoparticles as Phosphorus Fertilizer in Andisols and Oxisols Daniela Montalvo, Corresponding Author Daniela Montalvo [email protected] Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 Australia CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064 AustraliaCorresponding author ([email protected]).Search for more papers by this authorMike J. McLaughlin, Mike J. McLaughlin Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 Australia CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064 AustraliaSearch for more papers by this authorFien Degryse, Fien Degryse Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 AustraliaSearch for more papers by this author Daniela Montalvo, Corresponding Author Daniela Montalvo [email protected] Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 Australia CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064 AustraliaCorresponding author ([email protected]).Search for more papers by this authorMike J. McLaughlin, Mike J. McLaughlin Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 Australia CSIRO Land and Water, PMB 2, Glen Osmond, SA, 5064 AustraliaSearch for more papers by this authorFien Degryse, Fien Degryse Soil Science School of Agriculture Food and Wine Univ. of Adelaide, PMB 1, Glen Osmond, SA, 5064 AustraliaSearch for more papers by this author First published: 03 February 2015 https://doi.org/10.2136/sssaj2014.09.0373Citations: 101 All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Improving phosphorus (P) fertilizer efficiency is a challenge in acidic and strongly P sorbing soils. Nanotechnology may have potential to create more efficient fertilizers. Hydroxyapatite nanoparticles (n-HAP) were evaluated as a potential fertilizer to improve P efficiency based on the hypothesis that nano-sized particles can potentially move in the soil and reach the plant roots through the mass flow of soil water to roots created by transpiration. The transport of nano-sized and bulk-sized HAP was evaluated in saturated soil column experiments. Availability of P from n-HAP, bulk-HAP, and triple superphosphate (TSP) to wheat (Triticum aestivum) was evaluated by a 33P isotopic dilution technique in a glasshouse study with two Andisols from Chile and New Zealand and two Oxisols from Australia. Transport experiment showed that 5% of the applied n-HAP leached in the Andisol and <1% in the Oxisol. Bulk-HAP did not move in either of the soils. Across all soils, the P uptake and the percentage of P in the plant that was derived from the fertilizer followed the order: TSP > n-HAP > bulk-HAP. Although n-HAP performed better than bulk-HAP, most likely because of faster dissolution, TSP was still a more efficient P fertilizer. REFERENCES 1Alston, A.M., and Chin, K.W.. 1974. Response of subterranean clover to rock phosphates as affected by particle size and depth of mixing in the soil. Aust. J. Exp. Agric. Anim. Husb. 14: 649– 655. https://doi.org/10.1071/EA9740649 2Borm, P., Klaessig, F.C., Landry, T.D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R., and Wood, S.. 2006. Research strategies for safety evaluation of nanomaterials, Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 90: 23– 32. https://doi.org/10.1093/toxsci/kfj084 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000235429400003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 3Cakmak, I. 2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 247: 3– 24. https://doi.org/10.1023/A:1021194511492 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000179358800001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 4Casanova, E., Salas, A.M., and Toro, M.. 2002. Evaluating the effectiveness of phosphate fertilizers in some Venezuelan soils. Nutr. Cycling Agroecosyst. 63: 13– 20. https://doi.org/10.1023/A:1020582513441 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000178392600002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 5Chien, S.H., Prochnow, L.I., and Cantarella, H.. 2009. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron. 102: 267– 322. https://doi.org/10.1016/S0065-2113(09)01008-6 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000266721600008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 6De Rosa, M.C., Monreal, C., Schnitzer, M., Walsh, R., and Sultan, Y.. 2010. Nanotechnology in fertilizers. Nat. Nanotechnol. 5: 91. https://doi.org/10.1038/nnano.2010.2 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000275058500002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 7Donn, M.J., and Menzies, N.W.. 2005. Simulated rainwater effects on anion exchange capacity and nitrate retention in Ferrosols. Soil Res. 43: 33– 42. https://doi.org/10.1071/SR04015 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000227051700004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 8Fox, K., Tran, P.A., and Tran, N.. 2012. Recent advances in research applications of nanophase hydroxyapatite. ChemPhysChem 13: 2495– 2506. https://doi.org/10.1002/cphc.201200080 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000306126000006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 9Ghormade, V., Deshpande, M.V., and Paknikar, K.M.. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29: 792– 803. https://doi.org/10.1016/j.biotechadv.2011.06.007 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000296821900021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10Gogos, A., Knauer, K., and Bucheli, T.D.. 2012. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60: 9781– 9792. https://doi.org/10.1021/jf302154y http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000309335100001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 11Hammond, L.L., Chien, S.H., and Mokwunye, A.U.. 1986. Agronomic value of unacidulated and partially acidulated phosphate rocks indigenous to the tropics. Adv. Agron. 40: 89– 140. https://doi.org/10.1016/S0065-2113(08)60281-3 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1986H873100002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 12Hamon, R.E., Bertrand, I., and McLaughlin, M.J.. 2002. Use and abuse of isotopic exchange data in soil chemistry. Aust. J. Soil Res. 40: 1371– 1381. https://doi.org/10.1071/SR02046 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000179700900009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 13Kanabo, I.A.K., and Gilkes, R.J.. 1988. The effect of particle size on North Carolina phosphate rock on its dissolution in soil and on levels of bicarbonate-soluble phosphorus. Fert. Res. 15: 137– 145. https://doi.org/10.1007/BF01050675 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1988N385300004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 14Khasawneh, F., and Doll, E.. 1979. The use of phosphate rock for direct application to soils. Adv. Agron. 30: 159– 206. https://doi.org/10.1016/S0065-2113(08)60706-3 15Kottegoda, N., Munaweera, I., Madusanka, N., and Karunaratne, V.. 2011. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr. Sci. 101: 73– 78.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000292947700020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 16Leeuwenburgh, S.C.G., Ana, I.D., and Jansen, J.A.. 2010. Sodium citrate as an effective dispersant for the synthesis of inorganic-organic composites with a nanodispersed mineral phase. Acta Biomater. 6: 836– 844. https://doi.org/10.1016/j.actbio.2009.09.005 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000274943500014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 17Liu, R., and Lal, R.. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4: 5686. https://doi.org/10.1038/srep05686. 18Mason, S., McNeill, A., McLaughlin, M.J., and Zhang, H.. 2010. Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods. Plant Soil 337: 243– 258. https://doi.org/10.1007/s11104-010-0521-0 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000284159900018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 19Matejovic, I. 1997. Determination of carbon and nitrogen in samples of various soils by the dry combustion. Commun. Soil Sci. Plant Anal. 28: 1499– 1511. https://doi.org/10.1080/00103629709369892 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1997YD52200003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 20McKenzie, N.J., Coughlan, K.J., and Cresswell, H.P.. 2002. Soil physical measurements and interpretation for land evaluation. CSIRO, Collingwood, VIC, Australia. 21McLaughlin, M.J., McBeath, T.M., Smernik, R., Stacey, S.P., Ajiboye, B., and Guppy, C.. 2011. The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: An Australian perspective. Plant Soil 349: 69– 87. https://doi.org/10.1007/s11104-011-0907-7 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000297738400007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 22Montalvo, D., Degryse, F., and McLaughlin, M.J.. 2014. Fluid fertilizers improve phosphorus diffusion but not lability in Andisols and Oxisols. Soil Sci. Soc. Am. J. 78: 214– 224. https://doi.org/10.2136/sssaj2013.02.0075 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000331134000024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 23Montalvo, D., Degryse, F., and McLaughlin, M.J.. 2015. Agronomic effectiveness of granular and fluid phosphorus fertilizers in Andisols and Oxisols. Soil Sci. Soc. Am. J. 79:https://doi.org/10.2136/sssaj2014.04–0178 (in press). 24Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., and Kumar, D.S.. 2010. Nanoparticulate material delivery to plants. Plant Sci. 179: 154– 163. https://doi.org/10.1016/j.plantsci.2010.04.012 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000280329100002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 25Powers, K.W., Brown, S.C., Krishna, V.B., Wasdo, S.C., Moudgil, B.M., and Roberts, S.M.. 2006. Research strategies for safety evaluation of nanomaterials, Part VI: Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci. 90: 296– 303. https://doi.org/10.1093/toxsci/kfj099 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000236106000002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 26Pypers, P., Loon, L., Diels, J., Abaidoo, R., Smolders, E., and Merckx, R.. 2006. Plant-available P for maize and cowpea in P-deficient soils from the Nigerian Northern Guinea Savanna— Comparison of E- and L-values. Plant Soil 283: 251– 264. https://doi.org/10.1007/s11104-006-0016-1 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000239042200022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 27Rayment, G.E., and Higginson, F.R.. 1992. Australian laboratory handbook of soil and water chemical methods. Inkata, Melbourne, VIC, Australia. 28Rayment, G.E., and Lyons, D.J.. 2011. Soil chemical methods—Australasia. CSIRO, Collingwood, VIC, Australia. 29Sanchez, P.A., and Uehara, G.. 1980. Management considerations for acid soils with high phosphorus fixation capacity. In: F.E. Khasawneh et al., editors, The role of phosphorus in agriculture. ASA, CSSA, and SSSA, Madison, WI. p. 471– 514. 30Sanchez, P.A., and Salinas, J.G.. 1981. Low-input technology for managing oxisols and ultisols in tropical America. Adv. Agron. 34: 279– 406. https://doi.org/10.1016/S0065-2113(08)60889-5 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1981MW22300008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 31Sasson, Y., Levy-Ruso, G., Toledano, O., and Ishaaya, I.. 2007. Nanosuspensions: Emerging novel agrochemical formulations. In: I. Ishaaya et al., editors, Insecticides design using advanced technologies. Springer, Berlin. p. 1– 39. 32Singh, B., and Gilkes, R.. 1991. Phosphorus sorption in relation to soil properties for the major soil types of South-Western Australia. Soil Res. 29: 603– 618. https://doi.org/10.1071/SR9910603 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1991GE51200003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 33 Soil Survey Staff. 2003. Keys to soil taxonomy. 9th ed. USDA-NRCS, Washington, DC. 34Swain, S.K., Dorozhkin, S.V., and Sarkar, D.. 2012. Synthesis and dispersion of hydroxyapatite nanopowders. Mater. Sci. Eng. C 32: 1237– 1240.https://doi.org/10.1016/j.msec.2012.03.014 35Wang, D., Bradford, S.A., Paradelo, M., Peijnenburg, W.J.G.M., and Zhou, D.. 2012a. Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand. Soil Sci. Soc. Am. J. 76: 375– 388. https://doi.org/10.2136/sssaj2011.0203 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000300644400007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 36Wang, D., Bradford, S.A., Harvey, R.W., Gao, B., Cang, L., and Zhou, D.. 2012b. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. Environ. Sci. Technol. 46: 2738– 2745. https://doi.org/10.1021/es203784u http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000301023700036&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 37Wang, D., Chu, L., Paradelo, M., Peijnenburg, W.J.G.M., Wang, Y., and Zhou, D.. 2011. Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition. J. Colloid Interface Sci. 360: 398– 407. https://doi.org/10.1016/j.jcis.2011.04.064 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:000292066100012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 38Watkinson, J. 1994. Dissolution rate of phosphate rock particles having a wide range of sizes. Soil Res. 32: 1009– 1014. https://doi.org/10.1071/SR9941009 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1994PD70800010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 39Zarcinas, B.A., McLaughlin, M.J., and Smart, M.K.. 1996. The effect of acid digestion technique on the performance of nebulization systems used in inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 27: 1331– 1354. https://doi.org/10.1080/00103629609369636 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=WOS:A1996UJ93500032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Citing Literature Volume79, Issue2March-April 2015Pages 551-558 ReferencesRelatedInformation