Spatial interpolation methods applied in the environmental sciences: A review

多元插值 插值(计算机图形学) 数据挖掘 计算机科学 采样(信号处理) 空间分析 变量(数学) 样品(材料) 地质统计学 克里金 软件 样本量测定 环境数据 统计 空间变异性 机器学习 数学 人工智能 双线性插值 法学 程序设计语言 数学分析 化学 政治学 滤波器(信号处理) 运动(物理) 色谱法 计算机视觉
作者
Jin Li,Andrew D. Heap
出处
期刊:Environmental Modelling and Software [Elsevier]
卷期号:53: 173-189 被引量:702
标识
DOI:10.1016/j.envsoft.2013.12.008
摘要

Spatially continuous data of environmental variables are often required for environmental sciences and management. However, information for environmental variables is usually collected by point sampling, particularly for the mountainous region and deep ocean area. Thus, methods generating such spatially continuous data by using point samples become essential tools. Spatial interpolation methods (SIMs) are, however, often data-specific or even variable-specific. Many factors affect the predictive performance of the methods and previous studies have shown that their effects are not consistent. Hence it is difficult to select an appropriate method for a given dataset. This review aims to provide guidelines and suggestions regarding application of SIMs to environmental data by comparing the features of the commonly applied methods which fall into three categories, namely: non-geostatistical interpolation methods, geostatistical interpolation methods and combined methods. Factors affecting the performance, including sampling design, sample spatial distribution, data quality, correlation between primary and secondary variables, and interaction among factors, are discussed. A total of 25 commonly applied methods are then classified based on their features to provide an overview of the relationships among them. These features are quantified and then clustered to show similarities among these 25 methods. An easy to use decision tree for selecting an appropriate method from these 25 methods is developed based on data availability, data nature, expected estimation, and features of the method. Finally, a list of software packages for spatial interpolation is provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AUM123发布了新的文献求助10
1秒前
巴卡巴卡完成签到,获得积分10
1秒前
XXQ发布了新的文献求助10
1秒前
2秒前
林菲菲发布了新的文献求助10
3秒前
try发布了新的文献求助10
3秒前
宇宙队发布了新的文献求助10
3秒前
慧子发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
巴卡巴卡发布了新的文献求助10
4秒前
杜可欣发布了新的文献求助10
4秒前
4秒前
芳菲依旧应助紫熊采纳,获得10
4秒前
5秒前
fengfenghao完成签到,获得积分10
5秒前
赘婿应助zkyyy采纳,获得10
5秒前
BB88完成签到,获得积分10
6秒前
小蒋完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
英姑应助LLHHZZ采纳,获得10
7秒前
lishanner完成签到,获得积分10
7秒前
7秒前
Foalphaz发布了新的文献求助10
8秒前
sijietan发布了新的文献求助10
8秒前
8秒前
9秒前
甜甜的平文完成签到 ,获得积分10
9秒前
HXU完成签到,获得积分20
9秒前
9秒前
Yapi完成签到,获得积分10
9秒前
9秒前
庸人何必自扰完成签到,获得积分10
10秒前
11秒前
我是老大应助搞怪吐司采纳,获得10
11秒前
sdfaef关注了科研通微信公众号
11秒前
英俊的铭应助57r7uf采纳,获得10
11秒前
lili完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791