分叉
倍周期分岔
振动器
数学
分岔理论
惯性参考系
鞍结分岔
特征向量
控制理论(社会学)
数学分析
应用数学
非线性系统
振动
计算机科学
经典力学
物理
人工智能
量子力学
控制(管理)
作者
Guilin Wen,Shijian Chen,Qiutan Jin
标识
DOI:10.1016/j.jsv.2007.09.003
摘要
A new critical criterion of period-doubling bifurcations is proposed for high dimensional maps. Without the dependence on eigenvalues as in the classical bifurcation criterion, this criterion is composed of a series of algebraic conditions under which period-doubling bifurcation occurs. The proposed criterion is applied to the analysis of period-doubling bifurcation in a two-degree-of-freedom inertial shaker model. It can be seen in this example that the proposed criterion is preferable to the classical bifurcation criterion in high dimensional maps.
科研通智能强力驱动
Strongly Powered by AbleSci AI