Drinking, Driving, and Crashing: A Traffic-Flow Model of Alcohol-Related Motor Vehicle Accidents*

毒物控制 人口 伤害预防 运输工程 醉酒司机 撞车 人为因素与人体工程学 环境卫生 地理 工程类 医学 酒后驾驶 计算机科学 程序设计语言
作者
Paul J. Gruenewald,Fred W. Johnson
出处
期刊:Journal of Studies on Alcohol and Drugs [Alcohol Research Documentation, Inc.]
卷期号:71 (2): 237-248 被引量:28
标识
DOI:10.15288/jsad.2010.71.237
摘要

This study examined the influence of on-premise alcohol-outlet densities and of drinking-driver densities on rates of alcohol-related motor vehicle crashes. A traffic-flow model is developed to represent geographic relationships between residential locations of drinking drivers, alcohol outlets, and alcohol-related motor vehicle crashes.Cross-sectional and time-series cross-sectional spatial analyses were performed using data collected from 144 geographic units over 4 years. Data were obtained from archival and survey sources in six communities. Archival data were obtained within community areas and measured activities of either the resident population or persons visiting these communities. These data included local and highway traffic flow, locations of alcohol outlets, population density, network density of the local roadway system, and single-vehicle nighttime (SVN) crashes. Telephone-survey data obtained from residents of the communities were used to estimate the size of the resident drinking and driving population.Cross-sectional analyses showed that effects relating on-premise densities to alcohol-related crashes were moderated by highway trafficflow. Depending on levels of highway traffic flow, 10% greater densities were related to 0% to 150% greater rates of SVN crashes. Time-series cross-sectional analyses showed that changes in the population pool of drinking drivers and on-premise densities interacted to increase SVN crash rates.A simple traffic-flow model can assess the effects of on-premise alcohol-outlet densities and of drinking-driver densities as they vary across communities to produce alcohol-related crashes. Analyses based on these models can usefully guide policy decisions on the sitting of on-premise alcohol outlets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助学术z采纳,获得10
刚刚
科研通AI5应助归海紫翠采纳,获得30
1秒前
热情的初兰完成签到 ,获得积分10
2秒前
顺顺完成签到,获得积分10
2秒前
莫妮卡卡完成签到,获得积分10
2秒前
nbing完成签到,获得积分10
3秒前
SCI发布了新的文献求助50
3秒前
小猫多鱼完成签到,获得积分10
4秒前
4秒前
4秒前
默默尔烟发布了新的文献求助10
4秒前
4秒前
4秒前
宁静致远完成签到,获得积分10
4秒前
天天快乐应助内向秋寒采纳,获得10
7秒前
sfafasfsdf完成签到,获得积分10
7秒前
7秒前
luuuuuu发布了新的文献求助10
8秒前
lai发布了新的文献求助30
8秒前
8秒前
zrk发布了新的文献求助10
8秒前
8秒前
9秒前
ZJJ完成签到,获得积分10
9秒前
花开的声音1217完成签到,获得积分10
10秒前
古药完成签到,获得积分10
11秒前
赘婿应助烟雨行舟采纳,获得10
11秒前
seal发布了新的文献求助10
12秒前
12秒前
13秒前
不吃香菜发布了新的文献求助10
13秒前
RC_Wang应助ZJJ采纳,获得10
13秒前
Chridy发布了新的文献求助10
14秒前
14秒前
asipilin完成签到,获得积分10
14秒前
鼻揩了转去应助lixoii采纳,获得20
14秒前
15秒前
万能图书馆应助Steve采纳,获得10
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794