材料科学
纳米复合材料
有机粘土
聚丙烯
复合材料
热致晶体
磨料
聚合物
复配
马来酸酐
尼龙6
共聚物
液晶
作者
Baoqing Zhang,Julia Shuk‐Ping Wong,Richard C.M. Yam,Robert K.Y. Li
摘要
Abstract A new approach for improving the wear performances of nylon 6 (PA6)/clay nanocomposites was examined in this study. Two hybrid nanocomposites were prepared by melt blending a thermotropic liquid crystalline polymer (TLCP) and a well‐dispersed PA6/clay nanocomposite, but with and without the incorporation of maleic‐anhydride grafted polypropylene (MAPP) as compatibilizer. The addition of MAPP improved the compatibility between TLCP and matrix and thus enhanced the fibrillation of dispersed TLCP phase. Wear‐testing results revealed that the wear resistance of the compatibilized hybrid nanocomposite could be improved effectively, as indicated by the low values of specific wear rate and frictional coefficient, especially under high‐normal load (i.e., 80 N). Based on the characterization on the worn damage and the debris, it was suggested that abrasive wear was the main‐damage mechanism for all the materials under investigation, except for the compatibilized hybrid nanocomposite. For this system, the wear damage was caused by a combination of abrasive and adhesive wearing because of the formation of transfer film on the counter pin surface from the wear debris. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers
科研通智能强力驱动
Strongly Powered by AbleSci AI