Impact of Recommender System on Competition Between Personalizing and Non-Personalizing Firms

采购 客户群 业务 推荐系统 利润(经济学) 竞赛(生物学) 个性化 计算机科学 时间范围 产品(数学) 质量(理念) 营销 订单(交换) 产业组织 微观经济学 经济 财务 生态学 生物 哲学 几何学 数学 认识论 机器学习
作者
Abhijeet Ghoshal,Subodha Kumar,Vijay Mookerjee
出处
期刊:Journal of Management Information Systems [Informa]
卷期号:31 (4): 243-277 被引量:27
标识
DOI:10.1080/07421222.2014.1001276
摘要

How do recommender systems affect prices and profits of firms under competition? To explore this question, we model the strategic behavior of customers who make repeated purchases at two competing firms: one that provides personalized recommendations and another that does not. When a customer intends to purchase a product, she obtains recommendations from the personalizing firm and uses this recommendation to eventually purchase from one of the firms. The personalizing firm profiles the customer (based on past purchases) to recommend products. Hence, if a customer purchases less frequently from the personalizing firm, the recommendations made to her become less relevant. While considering the impact on the quality of recommendations received, a customer must balance two opposing forces: (1) the lower price charged by the non-personalizing firm, and (2) an additional fit cost incurred when purchasing from the non-personalizing firm and the increased cost due to recommendations of reduced quality in the future. An outcome of the analysis is that the customers should distribute their purchases across both firms to maximize surplus over a planning horizon. Anticipating this response, the firms simultaneously choose prices. We study the sensitivity of the equilibrium prices and profits of the firms with respect to the effectiveness of the recommender system and the profile deterioration rate. We also analyze some interesting variants of the base model in order to study how its key results could be influenced. One of the key takeaways of this research is that the recommender system can influence the price and profit of not only the personalizing firm but also the non-personalizing firm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soul发布了新的文献求助10
刚刚
1秒前
FancyShi完成签到,获得积分10
1秒前
1秒前
GGDA完成签到 ,获得积分10
2秒前
希望天下0贩的0应助ZJJ采纳,获得10
2秒前
3秒前
3秒前
3秒前
FancyShi发布了新的文献求助10
3秒前
4秒前
木炭应助虚心半莲采纳,获得10
5秒前
汉堡包应助点点点采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
英姑应助REFRESHING采纳,获得10
7秒前
7秒前
cc发布了新的文献求助10
7秒前
7秒前
司马绮山发布了新的文献求助10
8秒前
搜集达人应助aaaaaa采纳,获得10
8秒前
李健应助aaaaaa采纳,获得10
8秒前
liuwenjie应助aaaaaa采纳,获得10
8秒前
Hello应助aaaaaa采纳,获得100
8秒前
阳光he完成签到,获得积分10
8秒前
8秒前
老迟到的小蘑菇完成签到,获得积分10
9秒前
10秒前
万能图书馆应助瑞仔采纳,获得10
10秒前
10秒前
liuwenjie应助cnkly采纳,获得10
10秒前
搜集达人应助猫猫侠采纳,获得10
10秒前
JamesPei应助caffeine采纳,获得10
10秒前
雪茶应助Peeeang采纳,获得10
10秒前
自然的亦巧完成签到,获得积分10
11秒前
kingmantj发布了新的文献求助10
11秒前
壮观问寒发布了新的文献求助10
12秒前
zzh319完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560631
求助须知:如何正确求助?哪些是违规求助? 3134599
关于积分的说明 9408231
捐赠科研通 2834785
什么是DOI,文献DOI怎么找? 1558213
邀请新用户注册赠送积分活动 728009
科研通“疑难数据库(出版商)”最低求助积分说明 716667