Impact of Recommender System on Competition Between Personalizing and Non-Personalizing Firms

采购 客户群 业务 推荐系统 利润(经济学) 竞赛(生物学) 个性化 计算机科学 时间范围 产品(数学) 质量(理念) 营销 订单(交换) 产业组织 微观经济学 经济 财务 哲学 机器学习 认识论 生物 数学 生态学 几何学
作者
Abhijeet Ghoshal,Subodha Kumar,Vijay Mookerjee
出处
期刊:Journal of Management Information Systems [Taylor & Francis]
卷期号:31 (4): 243-277 被引量:27
标识
DOI:10.1080/07421222.2014.1001276
摘要

How do recommender systems affect prices and profits of firms under competition? To explore this question, we model the strategic behavior of customers who make repeated purchases at two competing firms: one that provides personalized recommendations and another that does not. When a customer intends to purchase a product, she obtains recommendations from the personalizing firm and uses this recommendation to eventually purchase from one of the firms. The personalizing firm profiles the customer (based on past purchases) to recommend products. Hence, if a customer purchases less frequently from the personalizing firm, the recommendations made to her become less relevant. While considering the impact on the quality of recommendations received, a customer must balance two opposing forces: (1) the lower price charged by the non-personalizing firm, and (2) an additional fit cost incurred when purchasing from the non-personalizing firm and the increased cost due to recommendations of reduced quality in the future. An outcome of the analysis is that the customers should distribute their purchases across both firms to maximize surplus over a planning horizon. Anticipating this response, the firms simultaneously choose prices. We study the sensitivity of the equilibrium prices and profits of the firms with respect to the effectiveness of the recommender system and the profile deterioration rate. We also analyze some interesting variants of the base model in order to study how its key results could be influenced. One of the key takeaways of this research is that the recommender system can influence the price and profit of not only the personalizing firm but also the non-personalizing firm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助mkl采纳,获得10
1秒前
2秒前
泥瓦酱完成签到,获得积分20
2秒前
3秒前
尊敬采文发布了新的文献求助10
4秒前
阿巴阿巴完成签到,获得积分10
4秒前
米大王完成签到,获得积分10
5秒前
5秒前
5秒前
小小虾发布了新的文献求助10
5秒前
桐桐应助xx采纳,获得10
6秒前
akamanuo完成签到,获得积分10
6秒前
古阿南完成签到 ,获得积分10
6秒前
天天快乐应助细腻的书雁采纳,获得10
6秒前
路遥知马力完成签到 ,获得积分10
7秒前
不甜发布了新的文献求助10
7秒前
7秒前
乐乐应助泥瓦酱采纳,获得10
8秒前
Grace完成签到,获得积分10
8秒前
8秒前
完美世界应助棋士采纳,获得10
9秒前
Cheung2121完成签到,获得积分20
9秒前
10秒前
从容的天空完成签到,获得积分10
10秒前
10秒前
情怀应助liuzengzhang666采纳,获得10
11秒前
11秒前
一键滑动解锁完成签到,获得积分20
11秒前
dzc应助xiaoyan.yao采纳,获得10
11秒前
12秒前
13秒前
欣慰的亦绿关注了科研通微信公众号
13秒前
乐乐应助niniyiya采纳,获得10
14秒前
帕尼灬尼发布了新的文献求助10
15秒前
15秒前
李欣宇发布了新的文献求助10
16秒前
红红发布了新的文献求助10
16秒前
18秒前
19秒前
winwin发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954534
求助须知:如何正确求助?哪些是违规求助? 3500649
关于积分的说明 11100400
捐赠科研通 3231158
什么是DOI,文献DOI怎么找? 1786297
邀请新用户注册赠送积分活动 869936
科研通“疑难数据库(出版商)”最低求助积分说明 801719