基因座(遗传学)
圆周率
R基因
基因
突变体
生物
遗传学
分子生物学
人口
植物抗病性
生物化学
社会学
人口学
作者
Yulin Jia,Rodger K. Martin
标识
DOI:10.1094/mpmi-21-4-0396
摘要
Resistance to the blast pathogen Magnaporthe oryzae is proposed to be initiated by physical binding of a putative cytoplasmic receptor encoded by a nucleotide binding site-type resistance gene, Pi-ta, to the processed elicitor encoded by the corresponding avirulence gene AVR-Pita. Here, we report the identification of a new locus, Ptr(t), that is required for Pi-ta–mediated signal recognition. A Pi-ta–expressing susceptible mutant was identified using a genetic screen. Putative mutations at Ptr(t) do not alter recognition specificity to another resistance gene, Pi-k s , in the Pi-ta homozygote, indicating that Ptr(t) is more likely specific to Pi-ta–mediated signal recognition. Genetic crosses of Pi-ta Ptr(t) and Pi-ta ptr(t) homozygotes suggest that Ptr(t) segregates as a single dominant nuclear gene. A ratio of 1:1 (resistant/susceptible) of a population of BC1 of Pi-ta Ptr(t) with pi-ta ptr(t) homozygotes indicates that Pi-ta and Ptr(t) are linked and cosegregate. Genotyping of mutants of pi-ta ptr(t) and Pi-ta Ptr(t) homozygotes using ten simple sequence repeat markers at the Pi-ta region determined that Pi-ta and Ptr(t) are located within a 9-megabase region and are of indica origin. Identification of Ptr(t) is a significant advancement in studying Pi-ta–mediated signal recognition and transduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI