Hybrid prediction model with missing value imputation for medical data

插补(统计学) 缺少数据 聚类分析 计算机科学 数据挖掘 数据集 人工智能 多层感知器 模式识别(心理学) 人工神经网络 机器学习
作者
Archana Purwar,Sandeep Kumar Singh
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:42 (13): 5621-5631 被引量:128
标识
DOI:10.1016/j.eswa.2015.02.050
摘要

Accurate prediction in the presence of large number of missing values in the data set has always been a challenging problem. Most of hybrid models to address this challenge have either deleted the missing instances from the data set (popularly known as case deletion) or have used some default way to fill the missing values. This paper, presents a novel hybrid prediction model with missing value imputation (HPM-MI) that analyze various imputation techniques using simple K-means clustering and apply the best one to a data set. The proposed hybrid model is the first one to use combination of K-means clustering with Multilayer Perceptron. K-means clustering is also used to validate class labels of given data (incorrectly classified instances are deleted i.e. pattern extracted from original data) before applying classifier. The proposed system has significantly improved data quality by use of best imputation technique after quantitative analysis of eleven imputation approaches. The efficiency of proposed model as predictive classification system is investigated on three benchmark medical data sets namely Pima Indians Diabetes, Wisconsin Breast Cancer, and Hepatitis from the UCI Repository of Machine Learning. In addition to accuracy, sensitivity, specificity; kappa statistics and the area under ROC are also computed. The experimental results show HPM-MI has produced accuracy, sensitivity, specificity, kappa and ROC as 99.82%, 100%, 99.74%, 0.996 and 1.0 respectively for Pima Indian Diabetes data set, 99.39%, 99.31%, 99.54%, 0.986, and 1.0 respectively for breast cancer data set and 99.08%, 100%, 96.55%, 0.978 and 0.99 respectively for Hepatitis data set. Results are best in comparison with existing methods. Further, the performance of our model is measured and analyzed as function of missing rate and train-test ratio using 2D synthetic data set and Wisconsin Diagnostics Breast Cancer Data Sets. Results are promising and therefore the proposed model will be very useful in prediction for medical domain especially when numbers of missing value are large in the data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charles完成签到,获得积分10
1秒前
好好学习完成签到,获得积分10
2秒前
2秒前
奋斗康乃馨完成签到 ,获得积分20
2秒前
Johnson完成签到 ,获得积分10
3秒前
6秒前
璇璇完成签到 ,获得积分10
7秒前
LuciusHe完成签到,获得积分10
7秒前
胡质斌完成签到,获得积分10
7秒前
lbm完成签到,获得积分10
8秒前
阔达听寒完成签到,获得积分10
8秒前
哎呀呀完成签到,获得积分10
10秒前
先一完成签到 ,获得积分10
10秒前
等待断秋完成签到,获得积分10
13秒前
打打应助芋圆采纳,获得10
13秒前
14秒前
都是完成签到,获得积分10
15秒前
dd99081完成签到 ,获得积分10
16秒前
树袋熊完成签到,获得积分10
17秒前
陈宗琴完成签到,获得积分10
18秒前
张zhang完成签到 ,获得积分10
19秒前
19秒前
19秒前
莫言发布了新的文献求助30
20秒前
蛋花肉圆汤完成签到,获得积分10
20秒前
BurgerKing完成签到,获得积分10
21秒前
lli发布了新的文献求助10
21秒前
落红禹03发布了新的文献求助10
22秒前
jzs完成签到 ,获得积分10
23秒前
开心向真发布了新的文献求助200
23秒前
yidemeihaoshijie完成签到 ,获得积分10
24秒前
luria完成签到,获得积分10
25秒前
研ZZ完成签到,获得积分10
26秒前
SHUIw完成签到 ,获得积分10
26秒前
刘五十七完成签到 ,获得积分10
26秒前
哈利波特完成签到,获得积分10
27秒前
吴媛媛完成签到 ,获得积分10
27秒前
热心小松鼠发布了新的文献求助200
28秒前
28秒前
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146946
求助须知:如何正确求助?哪些是违规求助? 2798219
关于积分的说明 7827061
捐赠科研通 2454768
什么是DOI,文献DOI怎么找? 1306462
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565