帕斯卡(单位)
计算机科学
解析
人工智能
联营
棱锥(几何)
利用
背景(考古学)
目标检测
水准点(测量)
词汇
模式识别(心理学)
计算机视觉
自然语言处理
地图学
程序设计语言
地理
古生物学
哲学
物理
光学
生物
语言学
计算机安全
作者
Hengshuang Zhao,Jianping Shi,Xiaojuan Qi,Xiaogang Wang,Jiaya Jia
出处
期刊:Computer Vision and Pattern Recognition
日期:2017-07-01
被引量:9690
标识
DOI:10.1109/cvpr.2017.660
摘要
Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixel-level prediction. The proposed approach achieves state-of-the-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields the new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes.
科研通智能强力驱动
Strongly Powered by AbleSci AI