物理
中子星
天体物理学
差速旋转
状态方程
超新星
星星
二进制数
广义相对论
致密星
X射线二进制
黑洞(网络)
角速度
质量比
经典力学
量子力学
布线(电子设计自动化)
链路状态路由协议
算术
路由协议
计算机科学
数学
计算机网络
作者
Matthias Hanauske,Kentaro Takami,Luke Bovard,Luciano Rezzolla,José A. Font,Filippo Galeazzi,H. Stöcker
出处
期刊:Physical review
日期:2017-08-07
卷期号:96 (4)
被引量:124
标识
DOI:10.1103/physrevd.96.043004
摘要
Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and hence on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasi-universality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk". Such a configuration is significantly different from the $j-{\rm constant}$ differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from $\simeq 0.03\,M_{\odot}$ in the case of high-mass binaries with stiff equations of state, up to $\simeq 0.2\,M_{\odot}$ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI