Role of nanoparticle size, shape and surface chemistry in oral drug delivery

纳米颗粒 纳米技术 药物输送 粒径 化学 纳米棒 毒品携带者 生物物理学 粒子(生态学) 靶向给药 药品 材料科学 医学 药理学 生物 物理化学 生态学
作者
Amrita Banerjee,Jianping Qi,Rohan Gogoi,Jessica Wong,Samir Mitragotri
出处
期刊:Journal of Controlled Release [Elsevier]
卷期号:238: 176-185 被引量:623
标识
DOI:10.1016/j.jconrel.2016.07.051
摘要

Nanoparticles find intriguing applications in oral drug delivery since they present a large surface area for interactions with the gastrointestinal tract and can be modified in various ways to address the barriers associated with oral delivery. The size, shape and surface chemistry of nanoparticles can greatly impact cellular uptake and efficacy of the treatment. However, the interplay between particle size, shape and surface chemistry has not been well investigated especially for oral drug delivery. To this end, we prepared sphere-, rod- and disc-shaped nanoparticles and conjugated them with targeting ligands to study the influence of size, shape and surface chemistry on their uptake and transport across intestinal cells. A triple co-culture model of intestinal cells was utilized to more closely mimic the intestinal epithelium. Results demonstrated higher cellular uptake of rod-shaped nanoparticles in the co-culture compared to spheres regardless of the presence of active targeting moieties. Transport of nanorods across the intestinal co-culture was also significantly higher than spheres. The findings indicate that nanoparticle-mediated oral drug delivery can be potentially improved with departure from spherical shape which has been traditionally utilized for the design of nanoparticles. We believe that understanding the role of nanoparticle geometry in intestinal uptake and transport will bring forth a paradigm shift in nanoparticle engineering for oral delivery and non-spherical nanoparticles should be further investigated and considered for oral delivery of therapeutic drugs and diagnostic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助Raim采纳,获得10
1秒前
1秒前
彭于晏应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
zho应助科研通管家采纳,获得10
3秒前
3秒前
5秒前
5秒前
科研阿白完成签到,获得积分10
5秒前
烟花应助蜂蜜芥末小熊采纳,获得10
6秒前
QQ发布了新的文献求助10
6秒前
科研通AI2S应助515采纳,获得10
8秒前
阿敬发布了新的文献求助10
8秒前
可爱的电话完成签到,获得积分10
9秒前
郭总完成签到 ,获得积分20
9秒前
9秒前
今日不再蛇皇完成签到,获得积分10
9秒前
puppy应助矜悠采纳,获得10
11秒前
cyx发布了新的文献求助10
11秒前
12秒前
14秒前
薛之谦完成签到,获得积分10
14秒前
14秒前
赵西里完成签到,获得积分10
15秒前
深海soda发布了新的文献求助10
15秒前
15秒前
17秒前
mimi完成签到,获得积分10
19秒前
张文博发布了新的文献求助10
19秒前
21秒前
21秒前
董小妍完成签到,获得积分10
21秒前
阿敬发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
隐形的灵松完成签到,获得积分10
22秒前
噜噜完成签到,获得积分10
23秒前
湛刘佳发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540614
求助须知:如何正确求助?哪些是违规求助? 3117897
关于积分的说明 9333158
捐赠科研通 2815765
什么是DOI,文献DOI怎么找? 1547752
邀请新用户注册赠送积分活动 721158
科研通“疑难数据库(出版商)”最低求助积分说明 712515