开裂
沥青
结构工程
粘弹性
疲劳开裂
沥青混凝土
工程类
疲劳极限
路面工程
法律工程学
材料科学
复合材料
作者
B. Shane Underwood,Cheolmin Baek,Y. Richard Kim
摘要
Cracking in asphalt concrete pavements is a major form of pavement distress in the United States. Because the cracking phenomenon is complex and cracking is often affected by both material and structural factors, field engineers have no quick and effective test and analysis protocols. A suite of fatigue analysis tools—as well as applications built around the simplified viscoelastic continuum damage (S-VECD) model—is presented. The S-VECD formulation is presented in a summarized form. Next, the characterization protocols, which are consistent with the capabilities of the asphalt mixture performance tester, are shown. Considerable attention is then given to S-VECD–based analysis tools for assessment of material- and pavement-level fatigue performance. Results show that the S-VECD model can be used to predict the number of cycles until fatigue failure for both constant stress and constant strain loading. The S-VECD model's sensitivity to mixture composition and external factors is shown through predictions of the endurance limit. Finally, pavement performance predictions are used to show how the S-VECD model can predict the field performance results of full-scale accelerated pavement tests, quantify the expected performance of pavement design alternatives, and identify factors that affect top-down cracking.
科研通智能强力驱动
Strongly Powered by AbleSci AI