导纳
共振(粒子物理)
导纳参数
灵敏度(控制系统)
谐波
特征向量
模态分析
谐波分析
情态动词
计算机科学
数学
控制理论(社会学)
拓扑(电路)
物理
电子工程
工程类
数学分析
声学
振动
电阻抗
电压
量子力学
材料科学
人工智能
组合数学
控制(管理)
高分子化学
作者
Zhenyu Huang,Yu Cui,Wilsun Xu
标识
DOI:10.1109/tpwrs.2006.883678
摘要
Harmonic resonance is closely related to the singularity of a network admittance matrix. The smallest eigenvalue of the matrix defines the mode of harmonic resonance. This paper applies this eigenvalue theory and proposes a method to determine which network components have significant contributions to a harmonic resonance phenomenon. The basic idea is to calculate the sensitivities of a resonance mode to the parameters of network components. The sensitivity results are then ranked to quantify the impact of each component. In this paper, the eigen-sensitivity theory as applied to harmonic resonance mode analysis is presented. Case studies are used to verify the theory. A practical example is given to illustrate the application of the proposed method. In addition, this paper further conducts extensive comparative analysis on three types of network-oriented modal analysis techniques. The results have clarified the similarities and differences among the techniques
科研通智能强力驱动
Strongly Powered by AbleSci AI