材料科学
聚合物
自愈水凝胶
粘弹性
支化(高分子化学)
共聚物
乙二醇
纳米技术
复合材料
高分子化学
化学工程
工程类
作者
Scott Grindy,Robert W. Learsch,Davoud Mozhdehi,Jing Cheng,Devin G. Barrett,Zhibin Guan,Phillip B. Messersmith,Niels Holten‐Andersen
出处
期刊:Nature Materials
[Springer Nature]
日期:2015-08-31
卷期号:14 (12): 1210-1216
被引量:410
摘要
In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material's mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided.
科研通智能强力驱动
Strongly Powered by AbleSci AI