Adversarial Attacks on Deep Models for Financial Transaction Records

对抗制 计算机科学 数据库事务 稳健性(进化) 深度学习 人工智能 机器学习 交易数据 交易成本 嵌入 数据建模 数据库 财务 业务 基因 生物化学 化学
作者
Ivan Fursov,Matvey Morozov,Nina Kaploukhaya,Elizaveta Kovtun,Rodrigo Rivera-Castro,Gleb Gusev,Dmitry Babaev,Ivan Kireev,Alexey Zaytsev,Evgeny Burnaev
标识
DOI:10.1145/3447548.3467145
摘要

Machine learning models using transaction records as inputs are popular among financial institutions. The most efficient models use deep-learning architectures similar to those in the NLP community, posing a challenge due to their tremendous number of parameters and limited robustness. In particular, deep-learning models are vulnerable to adversarial attacks: a little change in the input harms the model's output. In this work, we examine adversarial attacks on transaction records data and defenses from these attacks. The transaction records data have a different structure than the canonical NLP or time-series data, as neighboring records are less connected than words in sentences, and each record consists of both discrete merchant code and continuous transaction amount. We consider a black-box attack scenario, where the attack doesn't know the true decision model and pay special attention to adding transaction tokens to the end of a sequence. These limitations provide a more realistic scenario, previously unexplored in the NLP world. The proposed adversarial attacks and the respective defenses demonstrate remarkable performance using relevant datasets from the financial industry. Our results show that a couple of generated transactions are sufficient to fool a deep-learning model. Further, we improve model robustness via adversarial training or separate adversarial examples detection. This work shows that embedding protection from adversarial attacks improves model robustness, allowing a wider adoption of deep models for transaction records in banking and finance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助zyz采纳,获得10
刚刚
刚刚
刚刚
花生仔应助清明采纳,获得10
1秒前
2秒前
及尔完成签到,获得积分10
3秒前
闪闪小小发布了新的文献求助10
3秒前
Chen发布了新的文献求助10
4秒前
英俊的铭应助山复尔尔采纳,获得10
5秒前
兴奋的定帮应助jdfyttk采纳,获得10
5秒前
褚忆灵完成签到,获得积分10
5秒前
SSY完成签到,获得积分10
5秒前
5秒前
Sheng发布了新的文献求助200
5秒前
完美世界应助新野采纳,获得10
6秒前
ZXDDDD发布了新的文献求助10
6秒前
锐哥发布了新的文献求助10
7秒前
墨兮完成签到 ,获得积分10
8秒前
CipherSage应助lvjiahui采纳,获得10
9秒前
知不知o发布了新的文献求助10
9秒前
霜霜发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
威武的麦片完成签到,获得积分10
10秒前
gs发布了新的文献求助10
10秒前
11秒前
wanci应助缓慢千易采纳,获得10
11秒前
111完成签到,获得积分10
12秒前
zhc发布了新的文献求助10
12秒前
顺利毕业完成签到 ,获得积分10
13秒前
linkman发布了新的文献求助10
13秒前
14秒前
NexusExplorer应助zhalc采纳,获得10
14秒前
14秒前
卡卡西应助LONG采纳,获得10
15秒前
赘婿应助方东采纳,获得10
15秒前
16秒前
暖若安阳完成签到,获得积分10
16秒前
17秒前
鸣笛应助科研通管家采纳,获得30
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203