Adversarial Attacks on Deep Models for Financial Transaction Records

对抗制 计算机科学 数据库事务 稳健性(进化) 深度学习 人工智能 机器学习 交易数据 交易成本 嵌入 数据建模 数据库 财务 业务 基因 生物化学 化学
作者
Ivan Fursov,Matvey Morozov,Nina Kaploukhaya,Elizaveta Kovtun,Rodrigo Rivera-Castro,Gleb Gusev,Dmitry Babaev,Ivan Kireev,Alexey Zaytsev,Evgeny Burnaev
标识
DOI:10.1145/3447548.3467145
摘要

Machine learning models using transaction records as inputs are popular among financial institutions. The most efficient models use deep-learning architectures similar to those in the NLP community, posing a challenge due to their tremendous number of parameters and limited robustness. In particular, deep-learning models are vulnerable to adversarial attacks: a little change in the input harms the model's output. In this work, we examine adversarial attacks on transaction records data and defenses from these attacks. The transaction records data have a different structure than the canonical NLP or time-series data, as neighboring records are less connected than words in sentences, and each record consists of both discrete merchant code and continuous transaction amount. We consider a black-box attack scenario, where the attack doesn't know the true decision model and pay special attention to adding transaction tokens to the end of a sequence. These limitations provide a more realistic scenario, previously unexplored in the NLP world. The proposed adversarial attacks and the respective defenses demonstrate remarkable performance using relevant datasets from the financial industry. Our results show that a couple of generated transactions are sufficient to fool a deep-learning model. Further, we improve model robustness via adversarial training or separate adversarial examples detection. This work shows that embedding protection from adversarial attacks improves model robustness, allowing a wider adoption of deep models for transaction records in banking and finance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xg发布了新的文献求助10
1秒前
看看发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
Annie完成签到,获得积分10
3秒前
3秒前
通~发布了新的文献求助30
4秒前
4秒前
雨雾发布了新的文献求助10
5秒前
daiyapeng完成签到,获得积分10
5秒前
ivy应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
NN应助科研通管家采纳,获得10
6秒前
36456657应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
Hello应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
NN应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
36456657应助科研通管家采纳,获得10
7秒前
NN应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
NN应助科研通管家采纳,获得10
7秒前
7秒前
赘婿应助科研通管家采纳,获得30
7秒前
7秒前
shouyu29应助科研通管家采纳,获得10
7秒前
7秒前
顾闭月发布了新的文献求助10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794