EFNet: evidence fusion network for tumor segmentation from PET-CT volumes

分割 特征(语言学) 计算机科学 人工智能 卷积神经网络 融合 正电子发射断层摄影术 PET-CT 模式识别(心理学) 图像融合 核医学 医学 图像(数学) 语言学 哲学
作者
Zhaoshuo Diao,Huiyan Jiang,Xian‐Hua Han,Yudong Yao,Tianyu Shi
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (20): 205005-205005 被引量:21
标识
DOI:10.1088/1361-6560/ac299a
摘要

Precise delineation of target tumor from positron emission tomography-computed tomography (PET-CT) is a key step in clinical practice and radiation therapy. PET-CT co-segmentation actually uses the complementary information of two modalities to reduce the uncertainty of single-modal segmentation, so as to obtain more accurate segmentation results. At present, the PET-CT segmentation methods based on fully convolutional neural network (FCN) mainly adopt image fusion and feature fusion. The current fusion strategies do not consider the uncertainty of multi-modal segmentation and complex feature fusion consumes more computing resources, especially when dealing with 3D volumes. In this work, we analyze the PET-CT co-segmentation from the perspective of uncertainty, and propose evidence fusion network (EFNet). The network respectively outputs PET result and CT result containing uncertainty by proposed evidence loss, which are used as PET evidence and CT evidence. Then we use evidence fusion to reduce uncertainty of single-modal evidence. The final segmentation result is obtained based on evidence fusion of PET evidence and CT evidence. EFNet uses the basic 3D U-Net as backbone and only uses simple unidirectional feature fusion. In addition, EFNet can separately train and predict PET evidence and CT evidence, without the need for parallel training of two branch networks. We do experiments on the soft-tissue-sarcomas and lymphoma datasets. Compared with 3D U-Net, our proposed method improves the Dice by 8% and 5% respectively. Compared with the complex feature fusion method, our proposed method improves the Dice by 7% and 2% respectively. Our results show that in PET-CT segmentation methods based on FCN, by outputting uncertainty evidence and evidence fusion, the network can be simplified and the segmentation results can be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助kitten采纳,获得10
刚刚
JamesPei应助Kismet采纳,获得10
刚刚
无奈寻冬完成签到 ,获得积分10
刚刚
1秒前
1秒前
大虫发布了新的文献求助10
1秒前
852应助小凉采纳,获得10
1秒前
SYLH应助ZSQ采纳,获得10
2秒前
DAYAN发布了新的文献求助10
3秒前
上官若男应助未晞采纳,获得10
4秒前
mh发布了新的文献求助10
4秒前
4秒前
5秒前
忘崽子小拳头完成签到,获得积分10
5秒前
阿金啊完成签到,获得积分10
5秒前
今后应助肾小球呵呵采纳,获得30
6秒前
bwx发布了新的文献求助200
6秒前
7秒前
7秒前
一鸣大人完成签到,获得积分10
8秒前
9秒前
东日羲雨完成签到,获得积分10
10秒前
无花果应助刻苦大侠采纳,获得10
10秒前
今后应助白敬亭采纳,获得10
10秒前
11秒前
满意的寒凝完成签到 ,获得积分10
12秒前
吃肯德基发布了新的文献求助10
12秒前
过时的寄真完成签到,获得积分10
13秒前
13秒前
小马甲应助钢铁之心采纳,获得10
13秒前
球球发布了新的文献求助10
14秒前
lg发布了新的文献求助30
14秒前
现代的访曼应助妮妮采纳,获得20
15秒前
15秒前
高源完成签到,获得积分10
16秒前
ivandoctor发布了新的文献求助10
17秒前
17秒前
18秒前
kitten发布了新的文献求助10
19秒前
SHAO完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952814
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091101
捐赠科研通 3228832
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869189
科研通“疑难数据库(出版商)”最低求助积分说明 801367