EFNet: evidence fusion network for tumor segmentation from PET-CT volumes

分割 特征(语言学) 计算机科学 人工智能 卷积神经网络 融合 正电子发射断层摄影术 PET-CT 模式识别(心理学) 图像融合 核医学 医学 图像(数学) 语言学 哲学
作者
Zhaoshuo Diao,Huiyan Jiang,Xian‐Hua Han,Yudong Yao,Tianyu Shi
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (20): 205005-205005 被引量:21
标识
DOI:10.1088/1361-6560/ac299a
摘要

Precise delineation of target tumor from positron emission tomography-computed tomography (PET-CT) is a key step in clinical practice and radiation therapy. PET-CT co-segmentation actually uses the complementary information of two modalities to reduce the uncertainty of single-modal segmentation, so as to obtain more accurate segmentation results. At present, the PET-CT segmentation methods based on fully convolutional neural network (FCN) mainly adopt image fusion and feature fusion. The current fusion strategies do not consider the uncertainty of multi-modal segmentation and complex feature fusion consumes more computing resources, especially when dealing with 3D volumes. In this work, we analyze the PET-CT co-segmentation from the perspective of uncertainty, and propose evidence fusion network (EFNet). The network respectively outputs PET result and CT result containing uncertainty by proposed evidence loss, which are used as PET evidence and CT evidence. Then we use evidence fusion to reduce uncertainty of single-modal evidence. The final segmentation result is obtained based on evidence fusion of PET evidence and CT evidence. EFNet uses the basic 3D U-Net as backbone and only uses simple unidirectional feature fusion. In addition, EFNet can separately train and predict PET evidence and CT evidence, without the need for parallel training of two branch networks. We do experiments on the soft-tissue-sarcomas and lymphoma datasets. Compared with 3D U-Net, our proposed method improves the Dice by 8% and 5% respectively. Compared with the complex feature fusion method, our proposed method improves the Dice by 7% and 2% respectively. Our results show that in PET-CT segmentation methods based on FCN, by outputting uncertainty evidence and evidence fusion, the network can be simplified and the segmentation results can be improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助123采纳,获得10
刚刚
OAK发布了新的文献求助10
刚刚
1秒前
1秒前
unn发布了新的文献求助10
1秒前
2秒前
2秒前
杨依楠完成签到,获得积分10
3秒前
王成健发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
Abner完成签到,获得积分10
5秒前
浮游应助utopia采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
www完成签到 ,获得积分10
6秒前
7秒前
xxxx发布了新的文献求助10
7秒前
紫熊发布了新的文献求助10
9秒前
LYL发布了新的文献求助10
9秒前
高CA发布了新的文献求助10
9秒前
Rita发布了新的文献求助10
10秒前
王成健完成签到,获得积分10
10秒前
灰灰完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
xxfsx应助张某某采纳,获得10
11秒前
风趣甜瓜完成签到,获得积分20
11秒前
伯。完成签到 ,获得积分10
11秒前
LUO发布了新的文献求助10
11秒前
桥木有舟完成签到,获得积分10
12秒前
科研通AI6应助如常采纳,获得10
13秒前
赘婿应助Lucy采纳,获得10
14秒前
14秒前
文乐完成签到,获得积分10
15秒前
ssion完成签到 ,获得积分10
15秒前
LBQ完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507498
求助须知:如何正确求助?哪些是违规求助? 4603110
关于积分的说明 14483709
捐赠科研通 4536881
什么是DOI,文献DOI怎么找? 2486458
邀请新用户注册赠送积分活动 1469040
关于科研通互助平台的介绍 1441391