已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EFNet: evidence fusion network for tumor segmentation from PET-CT volumes

分割 特征(语言学) 计算机科学 人工智能 卷积神经网络 融合 正电子发射断层摄影术 PET-CT 模式识别(心理学) 图像融合 核医学 医学 图像(数学) 语言学 哲学
作者
Zhaoshuo Diao,Huiyan Jiang,Xian‐Hua Han,Yudong Yao,Tianyu Shi
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (20): 205005-205005 被引量:18
标识
DOI:10.1088/1361-6560/ac299a
摘要

Precise delineation of target tumor from positron emission tomography-computed tomography (PET-CT) is a key step in clinical practice and radiation therapy. PET-CT co-segmentation actually uses the complementary information of two modalities to reduce the uncertainty of single-modal segmentation, so as to obtain more accurate segmentation results. At present, the PET-CT segmentation methods based on fully convolutional neural network (FCN) mainly adopt image fusion and feature fusion. The current fusion strategies do not consider the uncertainty of multi-modal segmentation and complex feature fusion consumes more computing resources, especially when dealing with 3D volumes. In this work, we analyze the PET-CT co-segmentation from the perspective of uncertainty, and propose evidence fusion network (EFNet). The network respectively outputs PET result and CT result containing uncertainty by proposed evidence loss, which are used as PET evidence and CT evidence. Then we use evidence fusion to reduce uncertainty of single-modal evidence. The final segmentation result is obtained based on evidence fusion of PET evidence and CT evidence. EFNet uses the basic 3D U-Net as backbone and only uses simple unidirectional feature fusion. In addition, EFNet can separately train and predict PET evidence and CT evidence, without the need for parallel training of two branch networks. We do experiments on the soft-tissue-sarcomas and lymphoma datasets. Compared with 3D U-Net, our proposed method improves the Dice by 8% and 5% respectively. Compared with the complex feature fusion method, our proposed method improves the Dice by 7% and 2% respectively. Our results show that in PET-CT segmentation methods based on FCN, by outputting uncertainty evidence and evidence fusion, the network can be simplified and the segmentation results can be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白白白完成签到 ,获得积分10
4秒前
苏格拉没有底完成签到 ,获得积分10
5秒前
LP发布了新的文献求助10
6秒前
6秒前
annnnnnd完成签到 ,获得积分10
6秒前
CipherSage应助自然的茉莉采纳,获得10
7秒前
uniquedl完成签到 ,获得积分10
11秒前
燕尔蓝发布了新的文献求助30
12秒前
NPC应助RenSiyu采纳,获得30
13秒前
LP完成签到,获得积分10
15秒前
稍远完成签到,获得积分10
15秒前
17秒前
Hui完成签到,获得积分10
18秒前
popot应助单身的钧采纳,获得10
19秒前
RenSiyu完成签到,获得积分10
23秒前
深情安青应助胖鲤鱼采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
打打应助科研通管家采纳,获得10
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
27秒前
兜风寻宝藏完成签到 ,获得积分10
31秒前
健忘的松鼠完成签到,获得积分10
31秒前
GGGGEEEE完成签到,获得积分10
32秒前
33秒前
34秒前
36秒前
snah发布了新的文献求助30
38秒前
Wong Ka Kui发布了新的文献求助50
39秒前
兜风寻宝藏关注了科研通微信公众号
45秒前
传奇3应助稍远采纳,获得50
49秒前
威武的薯片完成签到 ,获得积分10
54秒前
55秒前
loong发布了新的文献求助10
1分钟前
李大刚完成签到 ,获得积分10
1分钟前
顾矜应助结实的思远采纳,获得10
1分钟前
SciGPT应助骆十八采纳,获得30
1分钟前
烟花应助英勇兔子采纳,获得10
1分钟前
loong完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499960
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382