EFNet: evidence fusion network for tumor segmentation from PET-CT volumes

分割 特征(语言学) 计算机科学 人工智能 卷积神经网络 融合 正电子发射断层摄影术 PET-CT 模式识别(心理学) 图像融合 核医学 医学 图像(数学) 语言学 哲学
作者
Zhaoshuo Diao,Huiyan Jiang,Xian‐Hua Han,Yudong Yao,Tianyu Shi
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (20): 205005-205005 被引量:18
标识
DOI:10.1088/1361-6560/ac299a
摘要

Precise delineation of target tumor from positron emission tomography-computed tomography (PET-CT) is a key step in clinical practice and radiation therapy. PET-CT co-segmentation actually uses the complementary information of two modalities to reduce the uncertainty of single-modal segmentation, so as to obtain more accurate segmentation results. At present, the PET-CT segmentation methods based on fully convolutional neural network (FCN) mainly adopt image fusion and feature fusion. The current fusion strategies do not consider the uncertainty of multi-modal segmentation and complex feature fusion consumes more computing resources, especially when dealing with 3D volumes. In this work, we analyze the PET-CT co-segmentation from the perspective of uncertainty, and propose evidence fusion network (EFNet). The network respectively outputs PET result and CT result containing uncertainty by proposed evidence loss, which are used as PET evidence and CT evidence. Then we use evidence fusion to reduce uncertainty of single-modal evidence. The final segmentation result is obtained based on evidence fusion of PET evidence and CT evidence. EFNet uses the basic 3D U-Net as backbone and only uses simple unidirectional feature fusion. In addition, EFNet can separately train and predict PET evidence and CT evidence, without the need for parallel training of two branch networks. We do experiments on the soft-tissue-sarcomas and lymphoma datasets. Compared with 3D U-Net, our proposed method improves the Dice by 8% and 5% respectively. Compared with the complex feature fusion method, our proposed method improves the Dice by 7% and 2% respectively. Our results show that in PET-CT segmentation methods based on FCN, by outputting uncertainty evidence and evidence fusion, the network can be simplified and the segmentation results can be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seata完成签到,获得积分10
1秒前
SCINEXUS应助科研通管家采纳,获得50
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
勿明应助科研通管家采纳,获得30
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
SCINEXUS应助科研通管家采纳,获得20
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
SCINEXUS应助科研通管家采纳,获得20
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
胖胖猪完成签到,获得积分10
5秒前
8秒前
田様应助Cz采纳,获得10
8秒前
科研通AI2S应助宇文数学采纳,获得10
9秒前
酷波er应助清新的苑博采纳,获得10
11秒前
Cz完成签到,获得积分20
12秒前
传奇3应助圣晟胜采纳,获得10
12秒前
韩帅发布了新的文献求助10
13秒前
薛定谔的猫完成签到,获得积分10
13秒前
14秒前
清秀的SONG完成签到 ,获得积分10
15秒前
霍不言完成签到,获得积分10
15秒前
16秒前
诸笑白发布了新的文献求助10
16秒前
健忘捕发布了新的文献求助10
16秒前
16秒前
整齐代真完成签到 ,获得积分10
16秒前
17秒前
Tingting完成签到 ,获得积分10
18秒前
Fionaaaa完成签到,获得积分10
18秒前
阿吧发布了新的文献求助10
20秒前
20秒前
问之发布了新的文献求助30
21秒前
21秒前
Fionaaaa发布了新的文献求助50
22秒前
Qinpy完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849