Multi-level retrieval with semantic Axiomatic Fuzzy Set clustering for question answering

计算机科学 答疑 人工智能 自然语言处理 聚类分析 文字嵌入 情报检索 嵌入
作者
Qi Lang,Xiaodong Liu,Yingjie Deng
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:111: 107858-107858 被引量:4
标识
DOI:10.1016/j.asoc.2021.107858
摘要

This paper considers open-domain and multi-hop reading comprehension tasks that require complex multi-step reasoning processes. The study is particularly challenging because it requires a model to learn to explore “bridge” information to connect text snippets relevant to the answer. Unlike the usual neural-network-based retrieval models, which are difficult to interpret, this paper proposes a coarse-to-fine unsupervised evidence sentences retrieval model based on the Axiomatic Fuzzy Sets clustering with both reasoning ability and interpretability. According to the entities that appeared in a question, a chained inference retrieval was carried out to get the coarser candidate documents from knowledge bases. Then, sentence-level multi-feature scoring rules based on the part of speech and grammar are proposed. The Axiomatic Fuzzy Sets clustering algorithm based on the feature scores selects finer and sentence-level evidence by semantic descriptions. The retrieval process of the candidate sentences is unsupervised and straightforward, which does not require word embedding. Our model achieves state-of-the-art results in three open-domain QA datasets: HotpotQA, SQuAD Open and Natural Questions Open.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助shanjianjie采纳,获得20
刚刚
笋蒸鱼发布了新的文献求助10
刚刚
1321完成签到,获得积分10
刚刚
huahua完成签到,获得积分10
刚刚
66应助马佳凯采纳,获得10
3秒前
林溪完成签到,获得积分10
3秒前
Amber应助CTX采纳,获得10
3秒前
lan完成签到 ,获得积分10
3秒前
共享精神应助Elaine采纳,获得10
5秒前
5秒前
安静一曲完成签到 ,获得积分10
5秒前
6秒前
完美世界应助嘎嘎顺利采纳,获得10
6秒前
崔靥完成签到,获得积分10
6秒前
7秒前
阿敏关注了科研通微信公众号
7秒前
一只绒可可完成签到,获得积分10
7秒前
CBY完成签到,获得积分10
7秒前
7秒前
QYPANG完成签到,获得积分10
8秒前
子时月完成签到,获得积分10
9秒前
脑洞疼应助xlx采纳,获得10
9秒前
jym完成签到,获得积分10
9秒前
9秒前
田様应助笑点低蜜蜂采纳,获得10
9秒前
今后应助乐观的一一采纳,获得10
10秒前
开朗向真完成签到,获得积分10
10秒前
10秒前
奋斗映寒发布了新的文献求助10
10秒前
梓榆发布了新的文献求助10
10秒前
帅气的沧海完成签到 ,获得积分10
10秒前
11秒前
FashionBoy应助包容的幻梅采纳,获得10
11秒前
11秒前
qaq完成签到,获得积分10
11秒前
11秒前
voyager完成签到,获得积分10
11秒前
勇敢肥猫发布了新的文献求助10
12秒前
YA发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740