Robust deepk-means: An effective and simple method for data clustering

聚类分析 计算机科学 模式识别(心理学) 人工智能 水准点(测量) 数据挖掘 相似性(几何) 算法 图像(数学) 地理 大地测量学
作者
Shudong Huang,Zhao Kang,Zenglin Xu,Quan-Hui Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:117: 107996-107996 被引量:84
标识
DOI:10.1016/j.patcog.2021.107996
摘要

Clustering aims to partition an input dataset into distinct groups according to some distance or similarity measurements. One of the most widely used clustering method nowadays is the k-means algorithm because of its simplicity and efficiency. In the last few decades, k-means and its various extensions have been formulated to solve the practical clustering problems. However, existing clustering methods are often presented in a single-layer formulation (i.e., shallow formulation). As a result, the mapping between the obtained low-level representation and the original input data may contain rather complex hierarchical information. To overcome the drawbacks of low-level features, deep learning techniques are adopted to extract deep representations and improve the clustering performance. In this paper, we propose a robust deep k-means model to learn the hidden representations associate with different implicit lower-level attributes. By using the deep structure to hierarchically perform k-means, the hierarchical semantics of data can be exploited in a layerwise way. Data samples from the same class are forced to be closer layer by layer, which is beneficial for clustering task. The objective function of our model is derived to a more trackable form such that the optimization problem can be tackled more easily and the final robust results can be obtained. Experimental results over 12 benchmark data sets substantiate that the proposed model achieves a breakthrough in clustering performance, compared with both classical and state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wocao完成签到 ,获得积分10
4秒前
卡卡发布了新的文献求助10
4秒前
5秒前
aa完成签到,获得积分10
5秒前
昵称什么的不重要啦完成签到 ,获得积分10
5秒前
甜筒完成签到 ,获得积分10
5秒前
兴奋的问旋应助Li猪猪采纳,获得10
6秒前
钰c完成签到,获得积分10
7秒前
心灵美的白易完成签到,获得积分10
7秒前
勤劳冰烟完成签到,获得积分10
9秒前
雨雾完成签到,获得积分10
9秒前
斯文败类应助凶狠的乐巧采纳,获得10
9秒前
9秒前
生言生语完成签到,获得积分10
9秒前
alick发布了新的文献求助10
10秒前
钰c发布了新的文献求助10
10秒前
Maggie完成签到 ,获得积分10
10秒前
四月是一只爱猫的羊完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
打打应助嘟嘟请让一让采纳,获得10
12秒前
专一完成签到,获得积分10
12秒前
Lucas应助九川采纳,获得10
12秒前
yl关闭了yl文献求助
12秒前
13秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
13秒前
13秒前
丘比特应助卡卡采纳,获得10
14秒前
14秒前
毛毛发布了新的文献求助10
14秒前
ljx完成签到 ,获得积分10
14秒前
活力山蝶应助小白采纳,获得10
17秒前
xg完成签到,获得积分10
17秒前
Zezezee发布了新的文献求助10
17秒前
笑点低可乐完成签到,获得积分10
18秒前
18秒前
坚强的樱发布了新的文献求助10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794