Robust deepk-means: An effective and simple method for data clustering

聚类分析 计算机科学 模式识别(心理学) 人工智能 水准点(测量) 数据挖掘 相似性(几何) 算法 图像(数学) 大地测量学 地理
作者
Shudong Huang,Zhao Kang,Zenglin Xu,Quan-Hui Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:117: 107996-107996 被引量:84
标识
DOI:10.1016/j.patcog.2021.107996
摘要

Clustering aims to partition an input dataset into distinct groups according to some distance or similarity measurements. One of the most widely used clustering method nowadays is the k-means algorithm because of its simplicity and efficiency. In the last few decades, k-means and its various extensions have been formulated to solve the practical clustering problems. However, existing clustering methods are often presented in a single-layer formulation (i.e., shallow formulation). As a result, the mapping between the obtained low-level representation and the original input data may contain rather complex hierarchical information. To overcome the drawbacks of low-level features, deep learning techniques are adopted to extract deep representations and improve the clustering performance. In this paper, we propose a robust deep k-means model to learn the hidden representations associate with different implicit lower-level attributes. By using the deep structure to hierarchically perform k-means, the hierarchical semantics of data can be exploited in a layerwise way. Data samples from the same class are forced to be closer layer by layer, which is beneficial for clustering task. The objective function of our model is derived to a more trackable form such that the optimization problem can be tackled more easily and the final robust results can be obtained. Experimental results over 12 benchmark data sets substantiate that the proposed model achieves a breakthrough in clustering performance, compared with both classical and state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLLLXR完成签到,获得积分10
1秒前
huan完成签到,获得积分20
1秒前
南吕廿八发布了新的文献求助10
2秒前
乐观的访风完成签到,获得积分10
2秒前
畅快远山发布了新的文献求助10
3秒前
3秒前
孙某人完成签到 ,获得积分0
3秒前
yang完成签到 ,获得积分10
3秒前
4秒前
窗外无尽黑完成签到,获得积分10
4秒前
asdfg123发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
6秒前
帅子完成签到,获得积分10
7秒前
QQ发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
糊涂涂完成签到 ,获得积分10
8秒前
9秒前
整齐泥猴桃完成签到,获得积分10
9秒前
wjj发布了新的文献求助10
10秒前
麻薯包完成签到,获得积分10
10秒前
想人陪的短靴完成签到,获得积分10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
兜兜应助科研通管家采纳,获得10
11秒前
云淡风轻完成签到,获得积分10
11秒前
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
杨振发布了新的文献求助10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151134
求助须知:如何正确求助?哪些是违规求助? 2802621
关于积分的说明 7849140
捐赠科研通 2460009
什么是DOI,文献DOI怎么找? 1309425
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601757