Targeted Attack of Deep Hashing Via Prototype-Supervised Adversarial Networks

计算机科学 鉴别器 发电机(电路理论) 人工智能 散列函数 对抗制 代表(政治) 深度学习 理论计算机科学 代码生成 机器学习 计算机工程 编码(集合论) 钥匙(锁) 计算机安全 程序设计语言 电信 功率(物理) 物理 集合(抽象数据类型) 量子力学 探测器 政治 政治学 法学
作者
Zheng Zhang,Xunguang Wang,Guangming Lu,Fumin Shen,Lei Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3392-3404 被引量:9
标识
DOI:10.1109/tmm.2021.3097506
摘要

Due to its powerful capability of representation learning and efficient computation, deep hashing has made significant progress in large-scale image retrieval. It has been recognized that deep neural networks are vulnerable to adversarial examples, which is a practical secure problem but seldom studied in deep hashing-based retrieval field. In this paper, we propose a novel prototype-supervised adversarial network (ProS-GAN), which formulates a flexible generative architecture for efficient and effective targeted hashing attack. To the best of our knowledge, this is one of the first generation-based methods to attack deep hashing networks. Generally, our proposed framework consists of three parts, i.e., a PrototypeNet, a Generator and a Discriminator. Specifically, the designed PrototypeNet embeds the target label into the semantic representation and learns the prototype code as the category-level representative of the target label. Moreover, the semantic representation and the original image are jointly fed into the generator for flexible targeted attack. Particularly, the prototype code is adopted to supervise the generator to construct the targeted adversarial example by minimizing the Hamming distance between the hash code of the adversarial example and the prototype code. Furthermore, the generator fools the discriminator to simultaneously encourage the adversarial examples visually realistic and the semantic representation informative. Extensive experiments demonstrate that the proposed framework can efficiently produce adversarial examples with better targeted attack performance and transferability over state-of-the-art targeted attack methods of deep hashing. The source code is available at https://github.com/xunguangwang/ProS-GAN_Trans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的山灵完成签到,获得积分10
刚刚
潇洒闭月发布了新的文献求助10
1秒前
Victoria发布了新的文献求助30
2秒前
3秒前
zhangl完成签到,获得积分10
3秒前
领导范儿应助胖Q采纳,获得10
3秒前
3秒前
kkkklin发布了新的文献求助10
3秒前
3秒前
Hysen_L发布了新的文献求助10
4秒前
4秒前
5秒前
小猴子应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
深情安青应助henryjun采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
HOU应助科研通管家采纳,获得10
7秒前
7秒前
HOU应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
王一帆发布了新的文献求助10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400