Targeted Attack of Deep Hashing Via Prototype-Supervised Adversarial Networks

计算机科学 鉴别器 发电机(电路理论) 人工智能 散列函数 对抗制 代表(政治) 深度学习 理论计算机科学 代码生成 机器学习 计算机工程 编码(集合论) 钥匙(锁) 计算机安全 程序设计语言 政治学 探测器 物理 政治 电信 功率(物理) 集合(抽象数据类型) 法学 量子力学
作者
Zheng Zhang,Xunguang Wang,Guangming Lu,Fumin Shen,Lei Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3392-3404 被引量:9
标识
DOI:10.1109/tmm.2021.3097506
摘要

Due to its powerful capability of representation learning and efficient computation, deep hashing has made significant progress in large-scale image retrieval. It has been recognized that deep neural networks are vulnerable to adversarial examples, which is a practical secure problem but seldom studied in deep hashing-based retrieval field. In this paper, we propose a novel prototype-supervised adversarial network (ProS-GAN), which formulates a flexible generative architecture for efficient and effective targeted hashing attack. To the best of our knowledge, this is one of the first generation-based methods to attack deep hashing networks. Generally, our proposed framework consists of three parts, i.e., a PrototypeNet, a Generator and a Discriminator. Specifically, the designed PrototypeNet embeds the target label into the semantic representation and learns the prototype code as the category-level representative of the target label. Moreover, the semantic representation and the original image are jointly fed into the generator for flexible targeted attack. Particularly, the prototype code is adopted to supervise the generator to construct the targeted adversarial example by minimizing the Hamming distance between the hash code of the adversarial example and the prototype code. Furthermore, the generator fools the discriminator to simultaneously encourage the adversarial examples visually realistic and the semantic representation informative. Extensive experiments demonstrate that the proposed framework can efficiently produce adversarial examples with better targeted attack performance and transferability over state-of-the-art targeted attack methods of deep hashing. The source code is available at https://github.com/xunguangwang/ProS-GAN_Trans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fox完成签到,获得积分10
2秒前
5秒前
小菜鸡完成签到,获得积分10
6秒前
++完成签到 ,获得积分10
7秒前
crystal完成签到,获得积分10
7秒前
9秒前
9秒前
Goodenough完成签到 ,获得积分10
10秒前
10秒前
Owen应助12采纳,获得10
12秒前
朴素的道罡完成签到,获得积分10
12秒前
谦让盼海完成签到,获得积分10
13秒前
春生发布了新的文献求助10
13秒前
13秒前
Shannon完成签到 ,获得积分10
14秒前
珠穆朗玛峰完成签到,获得积分10
15秒前
哈哈完成签到,获得积分10
17秒前
livingroom发布了新的文献求助30
17秒前
17秒前
WTC完成签到 ,获得积分10
18秒前
明亮巨人完成签到 ,获得积分10
18秒前
dl完成签到,获得积分10
20秒前
田様应助kk采纳,获得10
21秒前
jiangx发布了新的文献求助10
21秒前
MM完成签到,获得积分10
22秒前
QDF发布了新的文献求助10
23秒前
25秒前
Jin发布了新的文献求助10
25秒前
夏天再见完成签到,获得积分10
25秒前
25秒前
就叫希望吧完成签到 ,获得积分10
26秒前
医文轩完成签到,获得积分10
26秒前
LZM完成签到,获得积分10
27秒前
小二郎应助mengjiezhang采纳,获得50
28秒前
12发布了新的文献求助10
28秒前
乐乐乐乐乐乐应助Jin采纳,获得10
30秒前
毛慢慢发布了新的文献求助10
31秒前
脑洞疼应助QDF采纳,获得10
31秒前
李健应助QDF采纳,获得10
31秒前
32秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147998
求助须知:如何正确求助?哪些是违规求助? 2799021
关于积分的说明 7833250
捐赠科研通 2456174
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620