Targeted Attack of Deep Hashing Via Prototype-Supervised Adversarial Networks

计算机科学 鉴别器 发电机(电路理论) 人工智能 散列函数 对抗制 代表(政治) 深度学习 理论计算机科学 代码生成 机器学习 计算机工程 编码(集合论) 钥匙(锁) 计算机安全 程序设计语言 政治学 探测器 物理 政治 电信 功率(物理) 集合(抽象数据类型) 法学 量子力学
作者
Zheng Zhang,Xunguang Wang,Guangming Lu,Fumin Shen,Lei Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3392-3404 被引量:9
标识
DOI:10.1109/tmm.2021.3097506
摘要

Due to its powerful capability of representation learning and efficient computation, deep hashing has made significant progress in large-scale image retrieval. It has been recognized that deep neural networks are vulnerable to adversarial examples, which is a practical secure problem but seldom studied in deep hashing-based retrieval field. In this paper, we propose a novel prototype-supervised adversarial network (ProS-GAN), which formulates a flexible generative architecture for efficient and effective targeted hashing attack. To the best of our knowledge, this is one of the first generation-based methods to attack deep hashing networks. Generally, our proposed framework consists of three parts, i.e., a PrototypeNet, a Generator and a Discriminator. Specifically, the designed PrototypeNet embeds the target label into the semantic representation and learns the prototype code as the category-level representative of the target label. Moreover, the semantic representation and the original image are jointly fed into the generator for flexible targeted attack. Particularly, the prototype code is adopted to supervise the generator to construct the targeted adversarial example by minimizing the Hamming distance between the hash code of the adversarial example and the prototype code. Furthermore, the generator fools the discriminator to simultaneously encourage the adversarial examples visually realistic and the semantic representation informative. Extensive experiments demonstrate that the proposed framework can efficiently produce adversarial examples with better targeted attack performance and transferability over state-of-the-art targeted attack methods of deep hashing. The source code is available at https://github.com/xunguangwang/ProS-GAN_Trans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
繁荣的凡完成签到 ,获得积分10
1秒前
在水一方应助tend采纳,获得10
3秒前
4秒前
繁花完成签到,获得积分10
4秒前
4秒前
4秒前
摸鱼仙人完成签到,获得积分10
4秒前
17发布了新的文献求助10
5秒前
rat完成签到,获得积分10
5秒前
JIRUIYI完成签到,获得积分10
6秒前
浮游应助HAN采纳,获得10
6秒前
飘逸秋荷完成签到,获得积分10
6秒前
专注的冰巧完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
小趴菜完成签到,获得积分10
8秒前
Jasper应助tr采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
CHH发布了新的文献求助10
9秒前
nihaoya发布了新的文献求助10
10秒前
科研通AI6应助吉如天采纳,获得10
10秒前
脑洞疼应助17采纳,获得10
10秒前
10秒前
遇上就这样吧应助liyu采纳,获得200
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
yu发布了新的文献求助10
13秒前
NiNi完成签到,获得积分10
13秒前
23发布了新的文献求助10
13秒前
李爱国应助木头采纳,获得10
13秒前
JIRUIYI发布了新的文献求助10
13秒前
西门问道完成签到,获得积分10
13秒前
想学习发布了新的文献求助10
14秒前
英姑应助逸风望采纳,获得10
14秒前
tlotw41发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525150
求助须知:如何正确求助?哪些是违规求助? 4615463
关于积分的说明 14548366
捐赠科研通 4553496
什么是DOI,文献DOI怎么找? 2495334
邀请新用户注册赠送积分活动 1475898
关于科研通互助平台的介绍 1447659