已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Targeted Attack of Deep Hashing Via Prototype-Supervised Adversarial Networks

计算机科学 鉴别器 发电机(电路理论) 人工智能 散列函数 对抗制 代表(政治) 深度学习 理论计算机科学 代码生成 机器学习 计算机工程 编码(集合论) 钥匙(锁) 计算机安全 程序设计语言 政治学 探测器 物理 政治 电信 功率(物理) 集合(抽象数据类型) 法学 量子力学
作者
Zheng Zhang,Xunguang Wang,Guangming Lu,Fumin Shen,Lei Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3392-3404 被引量:9
标识
DOI:10.1109/tmm.2021.3097506
摘要

Due to its powerful capability of representation learning and efficient computation, deep hashing has made significant progress in large-scale image retrieval. It has been recognized that deep neural networks are vulnerable to adversarial examples, which is a practical secure problem but seldom studied in deep hashing-based retrieval field. In this paper, we propose a novel prototype-supervised adversarial network (ProS-GAN), which formulates a flexible generative architecture for efficient and effective targeted hashing attack. To the best of our knowledge, this is one of the first generation-based methods to attack deep hashing networks. Generally, our proposed framework consists of three parts, i.e., a PrototypeNet, a Generator and a Discriminator. Specifically, the designed PrototypeNet embeds the target label into the semantic representation and learns the prototype code as the category-level representative of the target label. Moreover, the semantic representation and the original image are jointly fed into the generator for flexible targeted attack. Particularly, the prototype code is adopted to supervise the generator to construct the targeted adversarial example by minimizing the Hamming distance between the hash code of the adversarial example and the prototype code. Furthermore, the generator fools the discriminator to simultaneously encourage the adversarial examples visually realistic and the semantic representation informative. Extensive experiments demonstrate that the proposed framework can efficiently produce adversarial examples with better targeted attack performance and transferability over state-of-the-art targeted attack methods of deep hashing. The source code is available at https://github.com/xunguangwang/ProS-GAN_Trans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guojingjing完成签到,获得积分10
刚刚
重要手机完成签到 ,获得积分10
1秒前
1秒前
WZH发布了新的文献求助10
6秒前
慕青应助默默采纳,获得10
7秒前
QQ糖发布了新的文献求助10
7秒前
没有昵称完成签到 ,获得积分10
8秒前
my应助pancake采纳,获得30
10秒前
文艺语蓉关注了科研通微信公众号
13秒前
14秒前
科目三应助今昔采纳,获得10
17秒前
NexusExplorer应助蓦然采纳,获得10
17秒前
殷勤的凌蝶完成签到 ,获得积分10
19秒前
轻松棉花糖完成签到 ,获得积分10
19秒前
珏珏_不是玉玉完成签到 ,获得积分10
21秒前
FX1688完成签到 ,获得积分10
22秒前
22秒前
林欢喜完成签到,获得积分10
22秒前
25秒前
WZH完成签到,获得积分10
26秒前
yuyuan完成签到,获得积分10
26秒前
27秒前
有趣的银完成签到,获得积分10
28秒前
my应助快乐的小蘑菇采纳,获得30
29秒前
文艺语蓉发布了新的文献求助10
29秒前
五月初夏发布了新的文献求助10
29秒前
aj发布了新的文献求助10
29秒前
30秒前
震动的忆雪完成签到 ,获得积分10
30秒前
艾路完成签到,获得积分10
31秒前
pkin完成签到,获得积分10
31秒前
共享精神应助小王采纳,获得30
33秒前
桐桐应助小王采纳,获得30
33秒前
搜集达人应助小王采纳,获得30
33秒前
CipherSage应助小王采纳,获得30
33秒前
脑洞疼应助小王采纳,获得30
33秒前
蓦然发布了新的文献求助10
34秒前
孑然完成签到 ,获得积分10
34秒前
35秒前
五月初夏完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130