Targeted Attack of Deep Hashing Via Prototype-Supervised Adversarial Networks

计算机科学 鉴别器 发电机(电路理论) 人工智能 散列函数 对抗制 代表(政治) 深度学习 理论计算机科学 代码生成 机器学习 计算机工程 编码(集合论) 钥匙(锁) 计算机安全 程序设计语言 政治学 探测器 物理 政治 电信 功率(物理) 集合(抽象数据类型) 法学 量子力学
作者
Zheng Zhang,Xunguang Wang,Guangming Lu,Fumin Shen,Lei Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3392-3404 被引量:9
标识
DOI:10.1109/tmm.2021.3097506
摘要

Due to its powerful capability of representation learning and efficient computation, deep hashing has made significant progress in large-scale image retrieval. It has been recognized that deep neural networks are vulnerable to adversarial examples, which is a practical secure problem but seldom studied in deep hashing-based retrieval field. In this paper, we propose a novel prototype-supervised adversarial network (ProS-GAN), which formulates a flexible generative architecture for efficient and effective targeted hashing attack. To the best of our knowledge, this is one of the first generation-based methods to attack deep hashing networks. Generally, our proposed framework consists of three parts, i.e., a PrototypeNet, a Generator and a Discriminator. Specifically, the designed PrototypeNet embeds the target label into the semantic representation and learns the prototype code as the category-level representative of the target label. Moreover, the semantic representation and the original image are jointly fed into the generator for flexible targeted attack. Particularly, the prototype code is adopted to supervise the generator to construct the targeted adversarial example by minimizing the Hamming distance between the hash code of the adversarial example and the prototype code. Furthermore, the generator fools the discriminator to simultaneously encourage the adversarial examples visually realistic and the semantic representation informative. Extensive experiments demonstrate that the proposed framework can efficiently produce adversarial examples with better targeted attack performance and transferability over state-of-the-art targeted attack methods of deep hashing. The source code is available at https://github.com/xunguangwang/ProS-GAN_Trans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aliangkou完成签到,获得积分10
刚刚
念安发布了新的文献求助10
1秒前
1秒前
Luna完成签到 ,获得积分10
2秒前
老实凝蕊发布了新的文献求助10
2秒前
大个应助Yelouy采纳,获得10
2秒前
oyx53完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
彩色菲鹰发布了新的文献求助10
4秒前
fxx发布了新的文献求助10
4秒前
生动电脑完成签到,获得积分10
5秒前
领导范儿应助糖脎采纳,获得10
5秒前
飞翔的鸣完成签到,获得积分0
6秒前
oyx53发布了新的文献求助10
6秒前
7秒前
8秒前
wu完成签到,获得积分10
8秒前
8秒前
香蕉千风发布了新的文献求助10
8秒前
小卡拉米完成签到,获得积分10
9秒前
无极微光应助小鱼采纳,获得20
9秒前
Yelouy完成签到,获得积分20
10秒前
12秒前
王羊发布了新的文献求助10
12秒前
13秒前
珈小羽完成签到,获得积分10
13秒前
13秒前
从容山槐完成签到,获得积分10
13秒前
DR_ZHANG发布了新的文献求助10
14秒前
14秒前
15秒前
FashionBoy应助天目山果农采纳,获得10
15秒前
北风北风完成签到 ,获得积分10
16秒前
科研通AI2S应助李庆采纳,获得10
16秒前
16秒前
16秒前
16秒前
科研通AI6.1应助老实凝蕊采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776956
求助须知:如何正确求助?哪些是违规求助? 5631393
关于积分的说明 15444543
捐赠科研通 4908967
什么是DOI,文献DOI怎么找? 2641505
邀请新用户注册赠送积分活动 1589491
关于科研通互助平台的介绍 1543995