亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Targeted Attack of Deep Hashing Via Prototype-Supervised Adversarial Networks

计算机科学 鉴别器 发电机(电路理论) 人工智能 散列函数 对抗制 代表(政治) 深度学习 理论计算机科学 代码生成 机器学习 计算机工程 编码(集合论) 钥匙(锁) 计算机安全 程序设计语言 政治学 探测器 物理 政治 电信 功率(物理) 集合(抽象数据类型) 法学 量子力学
作者
Zheng Zhang,Xunguang Wang,Guangming Lu,Fumin Shen,Lei Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3392-3404 被引量:9
标识
DOI:10.1109/tmm.2021.3097506
摘要

Due to its powerful capability of representation learning and efficient computation, deep hashing has made significant progress in large-scale image retrieval. It has been recognized that deep neural networks are vulnerable to adversarial examples, which is a practical secure problem but seldom studied in deep hashing-based retrieval field. In this paper, we propose a novel prototype-supervised adversarial network (ProS-GAN), which formulates a flexible generative architecture for efficient and effective targeted hashing attack. To the best of our knowledge, this is one of the first generation-based methods to attack deep hashing networks. Generally, our proposed framework consists of three parts, i.e., a PrototypeNet, a Generator and a Discriminator. Specifically, the designed PrototypeNet embeds the target label into the semantic representation and learns the prototype code as the category-level representative of the target label. Moreover, the semantic representation and the original image are jointly fed into the generator for flexible targeted attack. Particularly, the prototype code is adopted to supervise the generator to construct the targeted adversarial example by minimizing the Hamming distance between the hash code of the adversarial example and the prototype code. Furthermore, the generator fools the discriminator to simultaneously encourage the adversarial examples visually realistic and the semantic representation informative. Extensive experiments demonstrate that the proposed framework can efficiently produce adversarial examples with better targeted attack performance and transferability over state-of-the-art targeted attack methods of deep hashing. The source code is available at https://github.com/xunguangwang/ProS-GAN_Trans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
意欢完成签到 ,获得积分10
2秒前
科目三应助啾啾咪咪采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
gexzygg发布了新的文献求助10
2分钟前
2分钟前
杨三多完成签到,获得积分10
3分钟前
Li发布了新的文献求助10
3分钟前
酷波er应助Crescent采纳,获得10
3分钟前
852应助精明的靖雁采纳,获得10
3分钟前
3分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
xq发布了新的文献求助10
4分钟前
Li发布了新的文献求助10
4分钟前
xq完成签到,获得积分10
4分钟前
Crescent完成签到,获得积分10
4分钟前
4分钟前
吃点水果保护局完成签到 ,获得积分10
4分钟前
Crescent发布了新的文献求助10
4分钟前
现代的自行车完成签到 ,获得积分10
4分钟前
常有李完成签到,获得积分10
5分钟前
5分钟前
在水一方应助AliEmbark采纳,获得10
5分钟前
Chen完成签到 ,获得积分10
5分钟前
科研通AI6应助AliEmbark采纳,获得100
5分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
浮游应助清秋若月采纳,获得10
6分钟前
研友_VZG7GZ应助AliEmbark采纳,获得10
6分钟前
kale123应助Li采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549332
求助须知:如何正确求助?哪些是违规求助? 4634617
关于积分的说明 14634910
捐赠科研通 4576093
什么是DOI,文献DOI怎么找? 2509504
邀请新用户注册赠送积分活动 1485354
关于科研通互助平台的介绍 1456572