Targeted Attack of Deep Hashing Via Prototype-Supervised Adversarial Networks

计算机科学 鉴别器 发电机(电路理论) 人工智能 散列函数 对抗制 代表(政治) 深度学习 理论计算机科学 代码生成 机器学习 计算机工程 编码(集合论) 钥匙(锁) 计算机安全 程序设计语言 电信 功率(物理) 物理 集合(抽象数据类型) 量子力学 探测器 政治 政治学 法学
作者
Zheng Zhang,Xunguang Wang,Guangming Lu,Fumin Shen,Lei Zhu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 3392-3404 被引量:9
标识
DOI:10.1109/tmm.2021.3097506
摘要

Due to its powerful capability of representation learning and efficient computation, deep hashing has made significant progress in large-scale image retrieval. It has been recognized that deep neural networks are vulnerable to adversarial examples, which is a practical secure problem but seldom studied in deep hashing-based retrieval field. In this paper, we propose a novel prototype-supervised adversarial network (ProS-GAN), which formulates a flexible generative architecture for efficient and effective targeted hashing attack. To the best of our knowledge, this is one of the first generation-based methods to attack deep hashing networks. Generally, our proposed framework consists of three parts, i.e., a PrototypeNet, a Generator and a Discriminator. Specifically, the designed PrototypeNet embeds the target label into the semantic representation and learns the prototype code as the category-level representative of the target label. Moreover, the semantic representation and the original image are jointly fed into the generator for flexible targeted attack. Particularly, the prototype code is adopted to supervise the generator to construct the targeted adversarial example by minimizing the Hamming distance between the hash code of the adversarial example and the prototype code. Furthermore, the generator fools the discriminator to simultaneously encourage the adversarial examples visually realistic and the semantic representation informative. Extensive experiments demonstrate that the proposed framework can efficiently produce adversarial examples with better targeted attack performance and transferability over state-of-the-art targeted attack methods of deep hashing. The source code is available at https://github.com/xunguangwang/ProS-GAN_Trans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小番茄yuyu完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
2秒前
向太阳奔跑hx完成签到,获得积分10
2秒前
ly发布了新的文献求助10
2秒前
rcrc应助wyy采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
飞飞发布了新的文献求助10
4秒前
5秒前
完美世界应助卖萌的秋田采纳,获得10
5秒前
沉舟完成签到,获得积分10
5秒前
中央戏精学院完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
MOMOTG发布了新的文献求助10
7秒前
7秒前
深情安青应助王慧颖采纳,获得10
7秒前
7秒前
qwe完成签到,获得积分10
7秒前
小番茄yuyu发布了新的文献求助10
7秒前
wonder发布了新的文献求助10
8秒前
8秒前
Charon发布了新的文献求助10
8秒前
8秒前
zhanghan发布了新的文献求助10
8秒前
小黎发布了新的文献求助10
8秒前
8秒前
9秒前
77发布了新的文献求助10
9秒前
赘婿应助爱搬玉米采纳,获得10
9秒前
带头大哥应助拼搏的黑夜采纳,获得10
10秒前
11秒前
Megan完成签到,获得积分10
11秒前
内向灵凡发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760390
求助须知:如何正确求助?哪些是违规求助? 5524729
关于积分的说明 15397532
捐赠科研通 4897330
什么是DOI,文献DOI怎么找? 2634099
邀请新用户注册赠送积分活动 1582136
关于科研通互助平台的介绍 1537609