Protein Engineering by Efficient Sequence Space Exploration Through Combination of Directed Evolution and Computational Design Methodologies

序列(生物学) 序列空间 空格(标点符号) 计算机科学 计算生物学 蛋白质设计 蛋白质工程 定向进化 蛋白质结构 生物 数学 生物化学 离散数学 基因 操作系统 巴拿赫空间 突变体
作者
Subrata Pramanik,Francisca Contreras,Mehdi D. Davari,Ulrich Schwaneberg
标识
DOI:10.1002/9783527815128.ch7
摘要

Directed evolution has matured in academia and industry as a versatile algorithm to redesign enzymes to match demands in biotechnological applications (as documented by the Nobel Prize in chemistry in 2018). Based on the obtained knowledge, computational methods (e.g. FRESCO, FoldX, CNA, PROSS, ProSAR) emerged to be predictive methods to especially improve properties that could be localized within a protein (e.g. thermostability, selectivity, catalytic efficiency, and activity). The main limitation to efficiently explore and benefit from nature's potential in generating better enzymes is the size of the protein sequence space; experimentalists have to admit that they will never be able to experimentally sample through the whole sequence space. A combination of experimental and computational methods proved to be time efficient in redesigning enzymes to meet the application demands (e.g. in chemical and pharmaceuticals synthesis). In this chapter, we highlighted protein engineering strategies that combine directed evolution and computational analysis to efficiently reengineer enzymes and that partly contribute to a molecular understanding of structure function relationship, which can be transferred from enzymes to another. In this respect, an emphasis will be given to the “KnowVolution” (knowledge gaining directed evolution) strategy, which is generally applicable, minimizes experimental efforts, generates a molecular understanding on each positions/amino acid substitution, and was successfully applied to a broad range of and enzymes and properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆呆兽发布了新的文献求助10
刚刚
汉堡包应助零柒采纳,获得10
1秒前
小小果妈发布了新的文献求助20
1秒前
1秒前
1秒前
1秒前
gaizong发布了新的文献求助10
2秒前
领导范儿应助陌上花开采纳,获得10
2秒前
Wanfeng应助文件撤销了驳回
2秒前
2秒前
hyc发布了新的文献求助10
3秒前
4秒前
科研通AI6.1应助Ettrickfield采纳,获得10
4秒前
4秒前
dhfify完成签到,获得积分10
5秒前
5秒前
5秒前
Lucas应助姜汁树采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
李健的粉丝团团长应助YZ采纳,获得10
8秒前
8秒前
11发布了新的文献求助10
8秒前
FashionBoy应助Ryan采纳,获得10
8秒前
优雅夜柳关注了科研通微信公众号
9秒前
233发布了新的文献求助10
9秒前
9秒前
英俊的铭应助Isaiah采纳,获得30
9秒前
001发布了新的文献求助20
9秒前
zzz发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
七七完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
MyXu完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769365
求助须知:如何正确求助?哪些是违规求助? 5579538
关于积分的说明 15421436
捐赠科研通 4903042
什么是DOI,文献DOI怎么找? 2638103
邀请新用户注册赠送积分活动 1586002
关于科研通互助平台的介绍 1541075