Protein Engineering by Efficient Sequence Space Exploration Through Combination of Directed Evolution and Computational Design Methodologies

序列(生物学) 序列空间 空格(标点符号) 计算机科学 计算生物学 蛋白质设计 蛋白质工程 定向进化 蛋白质结构 生物 数学 生物化学 离散数学 基因 操作系统 巴拿赫空间 突变体
作者
Subrata Pramanik,Francisca Contreras,Mehdi D. Davari,Ulrich Schwaneberg
标识
DOI:10.1002/9783527815128.ch7
摘要

Directed evolution has matured in academia and industry as a versatile algorithm to redesign enzymes to match demands in biotechnological applications (as documented by the Nobel Prize in chemistry in 2018). Based on the obtained knowledge, computational methods (e.g. FRESCO, FoldX, CNA, PROSS, ProSAR) emerged to be predictive methods to especially improve properties that could be localized within a protein (e.g. thermostability, selectivity, catalytic efficiency, and activity). The main limitation to efficiently explore and benefit from nature's potential in generating better enzymes is the size of the protein sequence space; experimentalists have to admit that they will never be able to experimentally sample through the whole sequence space. A combination of experimental and computational methods proved to be time efficient in redesigning enzymes to meet the application demands (e.g. in chemical and pharmaceuticals synthesis). In this chapter, we highlighted protein engineering strategies that combine directed evolution and computational analysis to efficiently reengineer enzymes and that partly contribute to a molecular understanding of structure function relationship, which can be transferred from enzymes to another. In this respect, an emphasis will be given to the “KnowVolution” (knowledge gaining directed evolution) strategy, which is generally applicable, minimizes experimental efforts, generates a molecular understanding on each positions/amino acid substitution, and was successfully applied to a broad range of and enzymes and properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助小易采纳,获得10
2秒前
lxt完成签到,获得积分10
4秒前
6秒前
6秒前
怜然关注了科研通微信公众号
8秒前
情怀应助李杰采纳,获得10
10秒前
所所应助天天开心采纳,获得10
10秒前
初一发布了新的文献求助10
10秒前
赘婿应助万松辉采纳,获得10
10秒前
11秒前
ysws完成签到,获得积分10
12秒前
Orange应助乐观的颦采纳,获得10
12秒前
完美世界应助June采纳,获得10
14秒前
15秒前
15秒前
闪闪完成签到,获得积分10
17秒前
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
17秒前
所所应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得20
18秒前
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
慎默应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
20秒前
冷酷夏真完成签到 ,获得积分10
22秒前
22秒前
悦耳沛槐完成签到,获得积分10
22秒前
万松辉发布了新的文献求助10
25秒前
legend完成签到,获得积分0
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073