Directional design and synthesis of high-yield hollow Fe-MFI zeolite encapsulating ultra-small Fe2O3 nanoparticles by using mother liquid

沸石 溶解 化学工程 材料科学 再结晶(地质) 纳米颗粒 催化作用 产量(工程) 硅酸盐 纳米技术 化学 有机化学 复合材料 古生物学 工程类 生物
作者
Yi Zhai,Fumin Wang,Xubin Zhang,Guojun Lv,Yuzhou Wu,Tao Jiang,Qing Zhang,Mengyue Li,Mengyao Li,Yongkui Liu
出处
期刊:Nano Research [Springer Science+Business Media]
卷期号:14 (11): 4304-4313 被引量:23
标识
DOI:10.1007/s12274-021-3747-7
摘要

How to directionally design the hollow zeolite via a green route is of great significance. Here, we successfully synthesized the hollow Fe-silicate-1 encapsulated ultra-small Fe2O3 nanoparticles (2.5 nm) with higher yield (85.2%) by mother liquid than traditional dissolution-recrystallization for the first time, which was achieved by precisely regulating the number and distribution of defects in zeolite and cleverly utilizing the TPAOH and nuclei in mother liquor. The effects of synthetic temperature, synthetic period and addition amount of parent zeolite on the formation of hollow zeolite have been investigated and the effect of synthetic conditions on the defects in parent zeolite has been also firstly quantified. The corresponding formation mechanism has been proposed. The abundant inner defects provided by the zeolite synthesized at 130 °C for 1 day and large amount of TPAOH remaining in mother liquid are conducive to the formation of hollow zeolite. Meanwhile, both parent zeolite and nuclei (4-, 5-member rings and structure units) in mother liquid obtained at 130 °C play the crucial roles in enhancing the zeolite yield. Notably, Fe2O3 nanoparticles could decompose into small fragments by the interaction with nuclei in mother liquid. Partial ultra-small Fe2O3 nanoparticles would be encapsulated in cavity and the rest could be inserted in the zeolite framework, which is significantly different from the conventional dissolution-recrystallization mechanism. The obtained encapsulated catalyst shows the superior catalytic performance and stability in phenol and tetracycline degradation reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
淡然灯泡发布了新的文献求助10
2秒前
2秒前
个性紫完成签到 ,获得积分10
3秒前
4秒前
4秒前
hyjcnhyj完成签到,获得积分10
4秒前
俊逸依丝完成签到,获得积分10
6秒前
YY发布了新的文献求助30
7秒前
欣喜灯泡完成签到,获得积分10
8秒前
LG发布了新的文献求助10
8秒前
大个应助科研通管家采纳,获得10
8秒前
yuqi应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
从容芮应助科研通管家采纳,获得30
9秒前
从容芮应助科研通管家采纳,获得30
9秒前
英姑应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
从容芮应助科研通管家采纳,获得30
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
小郑在学习完成签到,获得积分10
11秒前
13秒前
yuhangli发布了新的文献求助10
14秒前
wwuu完成签到,获得积分10
15秒前
17秒前
鱼与木头发布了新的文献求助10
17秒前
风中钥匙完成签到,获得积分10
18秒前
Theprisoners举报澈竹影求助涉嫌违规
18秒前
小小怪发布了新的文献求助10
18秒前
鲜榨花生油完成签到,获得积分10
18秒前
wwuu发布了新的文献求助10
19秒前
英俊的铭应助LG采纳,获得10
20秒前
22秒前
25秒前
shinysparrow应助风中钥匙采纳,获得100
26秒前
合适背包发布了新的文献求助10
27秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724