Directional design and synthesis of high-yield hollow Fe-MFI zeolite encapsulating ultra-small Fe2O3 nanoparticles by using mother liquid

沸石 溶解 化学工程 材料科学 再结晶(地质) 纳米颗粒 催化作用 产量(工程) 硅酸盐 纳米技术 化学 有机化学 复合材料 生物 工程类 古生物学
作者
Ya Zhai,Fumin Wang,Xubin Zhang,Guojun Lv,Yuzhou Wu,Tao Jiang,Qing Zhang,Mengyue Li,Mengyao Li,Yongkui Liu
出处
期刊:Nano Research [Springer Nature]
卷期号:14 (11): 4304-4313 被引量:16
标识
DOI:10.1007/s12274-021-3747-7
摘要

How to directionally design the hollow zeolite via a green route is of great significance. Here, we successfully synthesized the hollow Fe-silicate-1 encapsulated ultra-small Fe2O3 nanoparticles (2.5 nm) with higher yield (85.2%) by mother liquid than traditional dissolution-recrystallization for the first time, which was achieved by precisely regulating the number and distribution of defects in zeolite and cleverly utilizing the TPAOH and nuclei in mother liquor. The effects of synthetic temperature, synthetic period and addition amount of parent zeolite on the formation of hollow zeolite have been investigated and the effect of synthetic conditions on the defects in parent zeolite has been also firstly quantified. The corresponding formation mechanism has been proposed. The abundant inner defects provided by the zeolite synthesized at 130 °C for 1 day and large amount of TPAOH remaining in mother liquid are conducive to the formation of hollow zeolite. Meanwhile, both parent zeolite and nuclei (4-, 5-member rings and structure units) in mother liquid obtained at 130 °C play the crucial roles in enhancing the zeolite yield. Notably, Fe2O3 nanoparticles could decompose into small fragments by the interaction with nuclei in mother liquid. Partial ultra-small Fe2O3 nanoparticles would be encapsulated in cavity and the rest could be inserted in the zeolite framework, which is significantly different from the conventional dissolution-recrystallization mechanism. The obtained encapsulated catalyst shows the superior catalytic performance and stability in phenol and tetracycline degradation reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzyy完成签到,获得积分10
1秒前
竹园发布了新的文献求助10
2秒前
小太阳发布了新的文献求助10
3秒前
善学以致用应助山芙abc采纳,获得10
5秒前
打打应助Pshan采纳,获得10
5秒前
7秒前
科研通AI2S应助竹园采纳,获得10
9秒前
一二完成签到,获得积分10
10秒前
junjun完成签到 ,获得积分10
10秒前
GongSyi完成签到 ,获得积分10
10秒前
11秒前
ps完成签到 ,获得积分10
13秒前
Kristine完成签到 ,获得积分10
13秒前
14秒前
SHUAI完成签到,获得积分10
14秒前
WY发布了新的文献求助10
15秒前
Lucas应助wjw采纳,获得10
18秒前
19秒前
19秒前
瘪良科研完成签到,获得积分10
21秒前
23秒前
lilila666完成签到 ,获得积分10
23秒前
拨云见日完成签到,获得积分10
24秒前
25秒前
25秒前
阿熊发布了新的文献求助10
26秒前
26秒前
28秒前
菠菜发布了新的文献求助100
29秒前
华仔应助后知后觉采纳,获得10
29秒前
感性的大楚完成签到,获得积分10
30秒前
mixcom完成签到,获得积分10
31秒前
奋斗蝴蝶发布了新的文献求助10
31秒前
SUS完成签到,获得积分10
32秒前
32秒前
简让完成签到 ,获得积分10
34秒前
bluesea完成签到 ,获得积分10
36秒前
葛藟萦藤发布了新的文献求助10
37秒前
lyy完成签到,获得积分10
37秒前
Ava应助莫西莫西采纳,获得10
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155850
求助须知:如何正确求助?哪些是违规求助? 2807060
关于积分的说明 7871807
捐赠科研通 2465463
什么是DOI,文献DOI怎么找? 1312240
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905